論文の概要: Position: An Inner Interpretability Framework for AI Inspired by Lessons from Cognitive Neuroscience
- arxiv url: http://arxiv.org/abs/2406.01352v2
- Date: Wed, 31 Jul 2024 13:18:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 20:05:33.424146
- Title: Position: An Inner Interpretability Framework for AI Inspired by Lessons from Cognitive Neuroscience
- Title(参考訳): 位置:認知神経科学の教訓に触発されたAIの内的解釈可能性フレームワーク
- Authors: Martina G. Vilas, Federico Adolfi, David Poeppel, Gemma Roig,
- Abstract要約: 内解釈可能性(Inner Interpretability)は、AIシステムの内部メカニズムを明らかにするための、有望な分野である。
近年の批判は、AIの幅広い目標を前進させるための有用性に疑問を呈する問題を提起している。
ここでは、関係する関係を描き、フィールド間で生産的に伝達できる教訓を強調します。
- 参考スコア(独自算出の注目度): 4.524832437237367
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inner Interpretability is a promising emerging field tasked with uncovering the inner mechanisms of AI systems, though how to develop these mechanistic theories is still much debated. Moreover, recent critiques raise issues that question its usefulness to advance the broader goals of AI. However, it has been overlooked that these issues resemble those that have been grappled with in another field: Cognitive Neuroscience. Here we draw the relevant connections and highlight lessons that can be transferred productively between fields. Based on these, we propose a general conceptual framework and give concrete methodological strategies for building mechanistic explanations in AI inner interpretability research. With this conceptual framework, Inner Interpretability can fend off critiques and position itself on a productive path to explain AI systems.
- Abstract(参考訳): 内的解釈可能性(Inner Interpretability)は、AIシステムの内部メカニズムを明らかにすることを任務とする、有望な新興分野である。
さらに、最近の批判は、AIのより広い目標を前進させるための有用性に疑問を呈する問題を提起している。
しかし、これらの問題は別の分野の認知神経科学と類似していることが見過ごされている。
ここでは、関係する関係を描き、フィールド間で生産的に伝達できる教訓を強調します。
そこで本研究では,AIの内部解釈可能性研究における機械的説明を構築するための,一般的な概念的枠組みを提案し,具体的な方法論的戦略を提案する。
この概念的なフレームワークによって、インナー・インタプリタビリティは批判を排除し、AIシステムを説明する生産的なパスに自らを置くことができる。
関連論文リスト
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - A Mechanistic Explanatory Strategy for XAI [0.0]
本稿では,ディープラーニングシステムの機能的構造を説明するためのメカニズム的戦略を概説する。
メカニスティックアプローチによると、不透明なAIシステムの説明には、意思決定を促進するメカニズムの特定が含まれる。
この研究は、モデル組織を研究するための体系的なアプローチが、より単純な(あるいはより控えめな)説明可能性技術が欠落する可能性のある要素を明らかにすることを示唆している。
論文 参考訳(メタデータ) (2024-11-02T18:30:32Z) - Metacognitive AI: Framework and the Case for a Neurosymbolic Approach [5.5441283041944]
我々は、TRAPと呼ばれるメタ認知人工知能(AI)を理解するための枠組みを導入する。
我々は、これらの局面のそれぞれについて議論し、メタ認知の課題に対処するために、ニューロシンボリックAI(NSAI)をどのように活用できるかを探求する。
論文 参考訳(メタデータ) (2024-06-17T23:30:46Z) - Mechanistic Interpretability for AI Safety -- A Review [28.427951836334188]
本稿では,機械的解釈可能性について概説する。
機械的解釈性は、AIシステムがより強力で精査されるにつれて、破滅的な結果を防ぐのに役立つ。
論文 参考訳(メタデータ) (2024-04-22T11:01:51Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - Opening the Black-Box: A Systematic Review on Explainable AI in Remote Sensing [51.524108608250074]
ブラックボックス機械学習アプローチは、リモートセンシングにおける知識抽出における主要なモデリングパラダイムとなっている。
我々は、この分野における重要なトレンドを特定するための体系的なレビューを行い、新しい説明可能なAIアプローチに光を当てた。
また,課題と将来的な研究方向性について,より詳細な展望を述べる。
論文 参考訳(メタデータ) (2024-02-21T13:19:58Z) - Emergent Explainability: Adding a causal chain to neural network
inference [0.0]
本稿では,創発的コミュニケーション(EmCom)による説明可能な人工知能(xAI)の強化のための理論的枠組みを提案する。
我々は、EmComのAIシステムへの新たな統合を探求し、入力と出力の間の従来の連想関係から、より微妙で因果的解釈へのパラダイムシフトを提供する。
本稿は、このアプローチの理論的基盤、潜在的に広い応用、そして、責任と透明なAIシステムに対するニーズの増大と整合性について論じる。
論文 参考訳(メタデータ) (2024-01-29T02:28:39Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。