論文の概要: Beyond symmetrization: effective adjacency matrices and renormalization for (un)singed directed graphs
- arxiv url: http://arxiv.org/abs/2406.01517v1
- Date: Mon, 3 Jun 2024 16:48:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 22:00:59.797125
- Title: Beyond symmetrization: effective adjacency matrices and renormalization for (un)singed directed graphs
- Title(参考訳): 対称性の超越:(非)有向グラフの有効隣接行列と再正規化
- Authors: Bruno Messias Farias de Resende,
- Abstract要約: 変形ラプラシア作用素の定義から生じる効果的な隣接行列の概念を定義する。
これらの効果的な行列は、ジェネリックグラフを符号のない無向グラフの族にマッピングすることを可能にする。
ホッジ・ヘルムホルツ分解がこの複雑さをナビゲートするのにどのように役立つかを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To address the peculiarities of directed and/or signed graphs, new Laplacian operators have emerged. For instance, in the case of directionality, we encounter the magnetic operator, dilation (which is underexplored), operators based on random walks, and so forth. The definition of these new operators leads to the need for new studies and concepts, and consequently, the development of new computational tools. But is this really necessary? In this work, we define the concept of effective adjacency matrices that arise from the definition of deformed Laplacian operators such as magnetic, dilation, and signal. These effective matrices allow mapping generic graphs to a family of unsigned, undirected graphs, enabling the application of the well-explored toolkit of measures, machine learning methods, and renormalization groups of undirected graphs. To explore the interplay between deformed operators and effective matrices, we show how the Hodge-Helmholtz decomposition can assist us in navigating this complexity.
- Abstract(参考訳): 有向グラフや符号グラフの特異性に対処するために、新しいラプラシア作用素が現れた。
例えば、方向性の場合、磁気演算子、ディレーション(探索不足)、ランダムウォークに基づく演算子等に遭遇する。
これらの新しい演算子の定義は、新しい研究や概念の必要性をもたらし、その結果、新しい計算ツールの開発へと繋がる。
しかし、これは本当に必要か?
本研究では、磁気、拡張、信号などの変形ラプラシア作用素の定義から生じる効果的な隣接行列の概念を定義する。
これらの効果的な行列は、一般的なグラフを符号のない非方向グラフの族にマッピングすることができ、よく探索された測度ツールキット、機械学習方法、および非方向グラフの再正規化グループの適用を可能にする。
変形作用素と実効行列の相互作用を探索するために、ホッジ・ヘルムホルツ分解がこの複雑さをナビゲートするのにどのように役立つかを示す。
関連論文リスト
- Learning signals defined on graphs with optimal transport and Gaussian process regression [1.1062090350704616]
計算物理学において、機械学習は工学研究における効率的な候補設計を探索するための強力な補完ツールとして登場した。
本稿では,入力が大きく,連続ノード属性を持つ疎グラフと,関連する入力のノード上で定義された信号が出力となるガウス過程回帰の革新的な戦略を提案する。
信号予測の実現に加えて,提案手法の要点は,不確実性や能動学習に欠かせないノード値に対する信頼区間を持つことである。
論文 参考訳(メタデータ) (2024-10-21T07:39:44Z) - Representing Edge Flows on Graphs via Sparse Cell Complexes [6.74438532801556]
本稿では, フロー表現学習問題,すなわち, 観測されたグラフをセルの集合で拡張する問題を紹介する。
この問題はNPハードであり,その解に対する効率的な近似アルゴリズムを導入している。
論文 参考訳(メタデータ) (2023-09-04T14:30:20Z) - Bures-Wasserstein Means of Graphs [60.42414991820453]
本研究では,スムーズなグラフ信号分布の空間への埋め込みを通じて,グラフ平均を定義する新しいフレームワークを提案する。
この埋め込み空間において平均を求めることにより、構造情報を保存する平均グラフを復元することができる。
我々は,新しいグラフの意味の存在と特異性を確立し,それを計算するための反復アルゴリズムを提供する。
論文 参考訳(メタデータ) (2023-05-31T11:04:53Z) - Transfer operators on graphs: Spectral clustering and beyond [1.147633309847809]
直交グラフのスペクトルクラスタリングは、クープマン作用素の固有関数の観点から解釈できることを示す。
一般化された転送演算子に基づく有向グラフの新しいクラスタリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-05-19T15:52:08Z) - Bayesian Inference of Transition Matrices from Incomplete Graph Data
with a Topological Prior [1.2891210250935143]
本研究では, 繰り返し相互作用とトポロジカルなトポロジカルな手法を用いて解析的に抽出可能なベイズ法を導出し, 遷移行列をデータ効率よく推論する。
トポロジカル制約の知識が部分的である場合においても, 高い精度で遷移確率を回復し, 頑健であることを示す。
論文 参考訳(メタデータ) (2022-10-27T13:17:47Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - Graph Kernel Neural Networks [53.91024360329517]
本稿では、グラフ上の内部積を計算するカーネル関数であるグラフカーネルを用いて、標準畳み込み演算子をグラフ領域に拡張することを提案する。
これにより、入力グラフの埋め込みを計算する必要のない完全に構造的なモデルを定義することができる。
私たちのアーキテクチャでは,任意の種類のグラフカーネルをプラグインすることが可能です。
論文 参考訳(メタデータ) (2021-12-14T14:48:08Z) - Unsupervised Graph Embedding via Adaptive Graph Learning [85.28555417981063]
グラフオートエンコーダ(GAE)は、グラフ埋め込みのための表現学習において強力なツールである。
本稿では,2つの新しい教師なしグラフ埋め込み法,適応グラフ学習(BAGE)による教師なしグラフ埋め込み,変分適応グラフ学習(VBAGE)による教師なしグラフ埋め込みを提案する。
いくつかのデータセットに関する実験的研究により、我々の手法がノードクラスタリング、ノード分類、グラフ可視化タスクにおいて、ベースラインよりも優れていることが実証された。
論文 参考訳(メタデータ) (2020-03-10T02:33:14Z) - Supervised Quantile Normalization for Low-rank Matrix Approximation [50.445371939523305]
我々は、$X$ の値と $UV$ の値を行ワイズで操作できる量子正規化演算子のパラメータを学習し、$X$ の低ランク表現の質を改善する。
本稿では,これらの手法が合成およびゲノムデータセットに適用可能であることを実証する。
論文 参考訳(メタデータ) (2020-02-08T21:06:02Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
本稿では,入力グラフとハイレベルな隠蔽表現との相関を測る新しい概念であるGMIを提案する。
我々は,グラフニューラルエンコーダの入力と出力の間でGMIを最大化することで訓練された教師なし学習モデルを開発する。
論文 参考訳(メタデータ) (2020-02-04T08:33:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。