Ferromagnetic semimetal and charge-density wave phases of interacting electrons in a honeycomb moiré potential
- URL: http://arxiv.org/abs/2406.01715v1
- Date: Mon, 3 Jun 2024 18:19:38 GMT
- Title: Ferromagnetic semimetal and charge-density wave phases of interacting electrons in a honeycomb moiré potential
- Authors: Yubo Yang, Miguel A. Morales, Shiwei Zhang,
- Abstract summary: We study the two-dimensional electron gas on a honeycomb moir'e lattice at quarter filling.
With increasing moir'e potential, the systems transitions from a paramagnetic metal to an itinerant ferromagnetic semimetal.
- Score: 11.888482610984967
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The exploration of quantum phases in moir\'e systems has drawn intense experimental and theoretical efforts. The realization of honeycomb symmetry has been a recent focus. The combination of strong interaction and honeycomb symmetry can lead to exotic electronic states such as fractional Chern insulator, unconventional superconductor, and quantum spin liquid. Accurate computations in such systems, with reliable treatment of strong long-ranged Coulomb interaction and approaching the large system sizes to extract thermodynamic phases, are mostly missing. We study the two-dimensional electron gas on a honeycomb moir\'e lattice at quarter filling, using fixed-phase diffusion Monte Carlo. The ground state phases of this important model are determined in the parameter regime relevant to current experiments. With increasing moir\'e potential, the systems transitions from a paramagnetic metal to an itinerant ferromagnetic semimetal and then a charge-density-wave insulator.
Related papers
- Bosonic Peierls state emerging from the one-dimensional Ising-Kondo interaction [0.6086160084025234]
Peierls transition, a hot topic in condensed matter physics, is usually believed to occur in the one-dimensional fermionic systems.
We show that, by means of perturbation analysis and numerical density-matrix renormalization group method, a bosonic analog of the Peierls state can occur in proper parameters regimes.
arXiv Detail & Related papers (2024-11-25T13:10:53Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Electron Transport Through a 1D Chain of Dopant-Based Quantum Dots [0.0]
The Fermi-Hubbard model is the prototypical model used to study quantum many-body systems.
Recent research has shown that the extended Fermi-Hubbard model is more accurate.
This research will lead to a better understanding of electron behavior in silicon-doped semiconductors.
arXiv Detail & Related papers (2024-02-06T16:41:59Z) - Observing dynamical phases of BCS superconductors in a cavity QED
simulator [0.0]
In conventional superconductors, electrons with opposite momenta bind into Cooper pairs due to an attractive interaction mediated by phonons in the material.
Superconductivity naturally emerges at thermal equilibrium, but can also emerge out of equilibrium when the system's parameters are abruptly changed.
Here we realize an alternate way to generate the proposed dynamical phases using cavity quantum electrodynamics.
arXiv Detail & Related papers (2023-05-31T18:00:03Z) - Thermodynamic Phase Diagram of Two-Dimensional Bosons in a Quasicrystal
Potential [0.0]
We determine the thermodynamic phase diagram of interacting bosons in a two-dimensional, homogeneous quasicrystal potential.
Our results are found using quantum Monte Carlo simulations.
In particular, we demonstrate stabilization of a genuine Bose glass phase against the normal fluid in sizable parameter ranges.
arXiv Detail & Related papers (2022-10-27T15:09:36Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Engineering the Radiative Dynamics of Thermalized Excitons with Metal
Interfaces [58.720142291102135]
We analyze the emission properties of excitons in TMDCs near planar metal interfaces.
We find suppression or enhancement of emission relative to the point dipole case by several orders of magnitude.
nanoscale optical cavities are a viable pathway to generating long-lifetime exciton states in TMDCs.
arXiv Detail & Related papers (2021-10-11T19:40:24Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Photon Condensation and Enhanced Magnetism in Cavity QED [68.8204255655161]
A system of magnetic molecules coupled to microwave cavities undergoes the equilibrium superradiant phase transition.
The effect of the coupling is first illustrated by the vacuum-induced ferromagnetic order in a quantum Ising model.
A transmission experiment is shown to resolve the transition, measuring the quantum electrodynamical control of magnetism.
arXiv Detail & Related papers (2020-11-07T11:18:24Z) - Coherent coupling between multiple ferrimagnetic spheres and a microwave
cavity in the quantum-limit [0.0]
The spin resonance of electrons can be coupled to a microwave cavity mode to obtain a photon-magnon hybrid system.
In this article, the behavior of a large number of ferrimagnetic spheres coupled to a single cavity is put under test.
We show that novel applications of optimally-controlled hybrid systems can be foreseen for setups embedding a large number of samples.
arXiv Detail & Related papers (2020-07-17T11:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.