論文の概要: Charting the Landscape of Nefarious Uses of Generative Artificial Intelligence for Online Election Interference
- arxiv url: http://arxiv.org/abs/2406.01862v1
- Date: Tue, 4 Jun 2024 00:26:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 20:32:51.344211
- Title: Charting the Landscape of Nefarious Uses of Generative Artificial Intelligence for Online Election Interference
- Title(参考訳): オンライン選挙干渉における生成人工知能の悪用景観の図表化
- Authors: Emilio Ferrara,
- Abstract要約: Generative Artificial Intelligence (GenAI) と Large Language Models (LLMs) は、特にオンライン選挙干渉の領域において大きなリスクをもたらす。
本稿では、GenAIの悪用を探求し、ディープフェイク、ボットネット、偽情報キャンペーン、合成IDを通じて民主的プロセスを破壊できる可能性を明らかにする。
- 参考スコア(独自算出の注目度): 11.323961700172175
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative Artificial Intelligence (GenAI) and Large Language Models (LLMs) pose significant risks, particularly in the realm of online election interference. This paper explores the nefarious applications of GenAI, highlighting their potential to disrupt democratic processes through deepfakes, botnets, targeted misinformation campaigns, and synthetic identities.
- Abstract(参考訳): Generative Artificial Intelligence (GenAI) と Large Language Models (LLMs) は、特にオンライン選挙干渉の領域において大きなリスクをもたらす。
本稿では、GenAIの悪用を探求し、ディープフェイク、ボットネット、偽情報キャンペーン、合成IDを通じて民主的プロセスを破壊できる可能性を明らかにする。
関連論文リスト
- Classifying Human-Generated and AI-Generated Election Claims in Social Media [8.990994727335064]
悪意ある俳優はソーシャルメディアを使って誤報を広め、選挙プロセスへの信頼を損なうことがある。
LLM(Large Language Models)の出現は、悪質なアクターが前例のない規模で誤情報を生成できるようにすることによって、この問題を悪化させる。
選挙に関する主張を特徴付けるための新しい分類法を提案する。
論文 参考訳(メタデータ) (2024-04-24T18:13:29Z) - Review of Generative AI Methods in Cybersecurity [0.6990493129893112]
本稿では、Generative AI(GenAI)の現状について概観する。
暴行、脱獄、即時注射と逆心理学の応用をカバーしている。
また、サイバー犯罪におけるGenAIのさまざまな応用として、自動ハッキング、フィッシングメール、ソーシャルエンジニアリング、リバース暗号、攻撃ペイロードの作成、マルウェアの作成などを提供している。
論文 参考訳(メタデータ) (2024-03-13T17:05:05Z) - Deepfakes, Misinformation, and Disinformation in the Era of Frontier AI, Generative AI, and Large AI Models [7.835719708227145]
ディープフェイクとm/disinformationの拡散は、世界中の情報エコシステムの整合性に対する恐ろしい脅威として現れている。
我々は,大規模モデル(LM-based GenAI)をベースとした生成AIの仕組みを強調した。
我々は、高度な検出アルゴリズム、クロスプラットフォームのコラボレーション、ポリシー駆動のイニシアチブを組み合わせた統合フレームワークを導入する。
論文 参考訳(メタデータ) (2023-11-29T06:47:58Z) - DemoFusion: Democratising High-Resolution Image Generation With No $$$ [75.38688090593867]
生成人工知能(GenAI)による高解像度画像生成は大きな可能性を秘めているが、訓練に必要な巨額の資本投資のため、少数の大企業に集中化が進んでいる。
本稿では,ハイレゾ世代のフロンティアを広範に確保しつつ,高レゾリューションなGenAIのフロンティアを前進させることにより,高レゾリューションなGenAIの民主化を目指す。
論文 参考訳(メタデータ) (2023-11-24T00:16:00Z) - Factuality Challenges in the Era of Large Language Models [113.3282633305118]
大規模言語モデル(LLM)は、誤った、誤った、あるいは誤解を招くコンテンツを生成する。
LLMは悪意のあるアプリケーションに利用することができる。
これは、ユーザーを欺く可能性があるという点で、社会に重大な課題をもたらす。
論文 参考訳(メタデータ) (2023-10-08T14:55:02Z) - GenAI Against Humanity: Nefarious Applications of Generative Artificial
Intelligence and Large Language Models [11.323961700172175]
本稿は、GenAIのリスクとLLMの誤用に関する厳密な研究の合成として機能する。
我々は、私たちが目にしているGenAI革命に波及した社会的影響を明らかにする。
仮想世界と現実世界の境界線はぼやけており、GenAIの悪名高いアプリケーションの結果が私たち全員に影響を与えています。
論文 参考訳(メタデータ) (2023-10-01T17:25:56Z) - Identifying and Mitigating the Security Risks of Generative AI [179.2384121957896]
本稿では,GenAIによる双対ジレンマに関するGoogleのワークショップの成果を報告する。
GenAIはまた、攻撃者が新しい攻撃を生成し、既存の攻撃のベロシティと有効性を高めるためにも使用できる。
この話題について,コミュニティの短期的,長期的目標について論じる。
論文 参考訳(メタデータ) (2023-08-28T18:51:09Z) - Large-scale Generative Simulation Artificial Intelligence: the Next
Hotspot in Generative AI [12.393966743563544]
GenAIは、自然言語処理とコンピュータビジョンにおける大きなブレークスルーに感銘を受けた。
LS-GenAIは、GenAIが接続する次のホットスポットである。
論文 参考訳(メタデータ) (2023-08-03T02:04:04Z) - Large Language Models Empowered Autonomous Edge AI for Connected
Intelligence [51.269276328087855]
エッジ人工知能(Edge AI)は、コネクテッドインテリジェンスを実現するための有望なソリューションである。
この記事では、ユーザのさまざまな要件を満たすために自動的に組織化し、適応し、最適化する、自律的なエッジAIシステムのビジョンを示す。
論文 参考訳(メタデータ) (2023-07-06T05:16:55Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
AIがIoTをより速く、より賢く、よりグリーンで、より安全にするための力を与える方法を示します。
まず、認識、学習、推論、行動の4つの視点から、IoTのためのAI研究の進歩を示す。
最後に、私たちの世界を深く再形成する可能性が高いAIoTの有望な応用をいくつかまとめる。
論文 参考訳(メタデータ) (2020-11-17T13:14:28Z) - Bias in Multimodal AI: Testbed for Fair Automatic Recruitment [73.85525896663371]
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
我々は、性別や人種の偏りを意識的に評価したマルチモーダルな合成プロファイルを用いて、自動求人アルゴリズムを訓練する。
我々の方法論と結果は、一般により公平なAIベースのツール、特により公平な自動採用システムを生成する方法を示している。
論文 参考訳(メタデータ) (2020-04-15T15:58:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。