論文の概要: Charting the Landscape of Nefarious Uses of Generative Artificial Intelligence for Online Election Interference
- arxiv url: http://arxiv.org/abs/2406.01862v1
- Date: Tue, 4 Jun 2024 00:26:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 20:32:51.344211
- Title: Charting the Landscape of Nefarious Uses of Generative Artificial Intelligence for Online Election Interference
- Title(参考訳): オンライン選挙干渉における生成人工知能の悪用景観の図表化
- Authors: Emilio Ferrara,
- Abstract要約: Generative Artificial Intelligence (GenAI) と Large Language Models (LLMs) は、特にオンライン選挙干渉の領域において大きなリスクをもたらす。
本稿では、GenAIの悪用を探求し、ディープフェイク、ボットネット、偽情報キャンペーン、合成IDを通じて民主的プロセスを破壊できる可能性を明らかにする。
- 参考スコア(独自算出の注目度): 11.323961700172175
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative Artificial Intelligence (GenAI) and Large Language Models (LLMs) pose significant risks, particularly in the realm of online election interference. This paper explores the nefarious applications of GenAI, highlighting their potential to disrupt democratic processes through deepfakes, botnets, targeted misinformation campaigns, and synthetic identities.
- Abstract(参考訳): Generative Artificial Intelligence (GenAI) と Large Language Models (LLMs) は、特にオンライン選挙干渉の領域において大きなリスクをもたらす。
本稿では、GenAIの悪用を探求し、ディープフェイク、ボットネット、偽情報キャンペーン、合成IDを通じて民主的プロセスを破壊できる可能性を明らかにする。
関連論文リスト
- Cyber Threats to Canadian Federal Election: Emerging Threats, Assessment, and Mitigation Strategies [2.04903126350824]
近年の選挙における外国の干渉は、技術的および人間の脆弱性を悪用する敵の高度化を全世界的に強調している。
これらの脆弱性を軽減するために、脅威評価は、出現する脅威を特定し、インシデント対応能力を開発し、サイバー脅威に対する公衆の信頼とレジリエンスを構築するために不可欠である。
この研究は、誤情報、偽情報、不正情報(MDM)キャンペーン、重要なインフラと選挙支援システムへの攻撃、悪意あるアクターによるスパイの3つの主要な脅威を特定している。
論文 参考訳(メタデータ) (2024-10-07T23:40:40Z) - Prioritising Response-able IP Practices in Digitization of Electoral Processes in Africa [0.0]
本稿では,知的財産権(IP)の実践と民主的選挙プロセスにおけるデジタル技術の採用との関係について考察する。
IPに関連するハードバウンダリのため、システムは技術IP所有者によってのみ制御される環境を生成する。
このことは、民主的プロセスを実行するデジタル技術の応答性と信頼性に疑問を呈する。
論文 参考訳(メタデータ) (2024-08-07T11:07:09Z) - Mapping the individual, social, and biospheric impacts of Foundation Models [0.39843531413098965]
本稿では,基礎モデルと生成AIの社会的,政治的,環境的側面を説明するための重要な枠組みを提供する。
リスクと害の14のカテゴリを特定し、それらの個人的、社会的、および生物圏的影響に応じてそれらをマッピングする。
論文 参考訳(メタデータ) (2024-07-24T10:05:40Z) - Near to Mid-term Risks and Opportunities of Open-Source Generative AI [94.06233419171016]
Generative AIの応用は、科学や医学、教育など、さまざまな分野に革命をもたらすことが期待されている。
こうした地震の影響の可能性は、潜在的なリスクに関する活発な議論を引き起こし、より厳格な規制を要求した。
この規制は、オープンソースのジェネレーティブAIの誕生する分野を危険にさらしている可能性が高い。
論文 参考訳(メタデータ) (2024-04-25T21:14:24Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
汎用AIは、一般大衆がAIを使用してそのパワーを利用するための障壁を下げたようだ。
本稿では,AI利用事例とその影響を推測し,評価するためのフレームワークであるPartICIP-AIを紹介する。
論文 参考訳(メタデータ) (2024-03-21T19:12:37Z) - Deepfakes, Misinformation, and Disinformation in the Era of Frontier AI, Generative AI, and Large AI Models [7.835719708227145]
ディープフェイクとm/disinformationの拡散は、世界中の情報エコシステムの整合性に対する恐ろしい脅威として現れている。
我々は,大規模モデル(LM-based GenAI)をベースとした生成AIの仕組みを強調した。
我々は、高度な検出アルゴリズム、クロスプラットフォームのコラボレーション、ポリシー駆動のイニシアチブを組み合わせた統合フレームワークを導入する。
論文 参考訳(メタデータ) (2023-11-29T06:47:58Z) - Decoding the Threat Landscape : ChatGPT, FraudGPT, and WormGPT in Social Engineering Attacks [0.0]
ジェネレーティブAIモデルは、サイバー攻撃の分野に革命をもたらし、悪意あるアクターに、説得力がありパーソナライズされたフィッシングルアーを作る力を与えている。
これらのモデルであるChatGPT、FraudGPT、WormGPTは、既存の脅威を増大させ、新たなリスクの次元へと導いてきた。
これらの脅威に対処するため、従来のセキュリティ対策、AIによるセキュリティソリューション、サイバーセキュリティにおける協調的なアプローチなど、さまざまな戦略を概説する。
論文 参考訳(メタデータ) (2023-10-09T10:31:04Z) - Factuality Challenges in the Era of Large Language Models [113.3282633305118]
大規模言語モデル(LLM)は、誤った、誤った、あるいは誤解を招くコンテンツを生成する。
LLMは悪意のあるアプリケーションに利用することができる。
これは、ユーザーを欺く可能性があるという点で、社会に重大な課題をもたらす。
論文 参考訳(メタデータ) (2023-10-08T14:55:02Z) - Identifying and Mitigating the Security Risks of Generative AI [179.2384121957896]
本稿では,GenAIによる双対ジレンマに関するGoogleのワークショップの成果を報告する。
GenAIはまた、攻撃者が新しい攻撃を生成し、既存の攻撃のベロシティと有効性を高めるためにも使用できる。
この話題について,コミュニティの短期的,長期的目標について論じる。
論文 参考訳(メタデータ) (2023-08-28T18:51:09Z) - The Role of Large Language Models in the Recognition of Territorial
Sovereignty: An Analysis of the Construction of Legitimacy [67.44950222243865]
Google MapsやLarge Language Models (LLM)のような技術ツールは、しばしば公平で客観的であると見なされる。
我々は、クリミア、ウェストバンク、トランスニトリアの3つの論争領域の事例を、ウィキペディアの情報と国連の決議に対するChatGPTの反応を比較して強調する。
論文 参考訳(メタデータ) (2023-03-17T08:46:49Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
ワークショップは、サイバーセキュリティの問題へのAIの適用に焦点を当てる。
サイバーシステムは大量のデータを生成し、これを効果的に活用することは人間の能力を超えます。
論文 参考訳(メタデータ) (2022-02-28T18:27:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。