論文の概要: Mapping the individual, social, and biospheric impacts of Foundation Models
- arxiv url: http://arxiv.org/abs/2407.17129v1
- Date: Wed, 24 Jul 2024 10:05:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-25 14:14:00.039424
- Title: Mapping the individual, social, and biospheric impacts of Foundation Models
- Title(参考訳): 基礎モデルの個人的・社会的・生物圏的影響のマッピング
- Authors: Andrés Domínguez Hernández, Shyam Krishna, Antonella Maia Perini, Michael Katell, SJ Bennett, Ann Borda, Youmna Hashem, Semeli Hadjiloizou, Sabeehah Mahomed, Smera Jayadeva, Mhairi Aitken, David Leslie,
- Abstract要約: 本稿では,基礎モデルと生成AIの社会的,政治的,環境的側面を説明するための重要な枠組みを提供する。
リスクと害の14のカテゴリを特定し、それらの個人的、社会的、および生物圏的影響に応じてそれらをマッピングする。
- 参考スコア(独自算出の注目度): 0.39843531413098965
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Responding to the rapid roll-out and large-scale commercialization of foundation models, large language models, and generative AI, an emerging body of work is shedding light on the myriad impacts these technologies are having across society. Such research is expansive, ranging from the production of discriminatory, fake and toxic outputs, and privacy and copyright violations, to the unjust extraction of labor and natural resources. The same has not been the case in some of the most prominent AI governance initiatives in the global north like the UK's AI Safety Summit and the G7's Hiroshima process, which have influenced much of the international dialogue around AI governance. Despite the wealth of cautionary tales and evidence of algorithmic harm, there has been an ongoing over-emphasis within the AI governance discourse on technical matters of safety and global catastrophic or existential risks. This narrowed focus has tended to draw attention away from very pressing social and ethical challenges posed by the current brute-force industrialization of AI applications. To address such a visibility gap between real-world consequences and speculative risks, this paper offers a critical framework to account for the social, political, and environmental dimensions of foundation models and generative AI. We identify 14 categories of risks and harms and map them according to their individual, social, and biospheric impacts. We argue that this novel typology offers an integrative perspective to address the most urgent negative impacts of foundation models and their downstream applications. We conclude with recommendations on how this typology could be used to inform technical and normative interventions to advance responsible AI.
- Abstract(参考訳): ファウンデーションモデル、大規模言語モデル、そして生成AIの迅速なロールアウトと大規模商業化に対応して、新たな仕事の原動力は、これらの技術が社会全体にもたらす無数の影響に光を当てることだ。
このような研究は、差別的、偽物、有害なアウトプットの生産、プライバシーと著作権の侵害から、労働と天然資源の不正な抽出まで幅広い。
英国のAI Safety SummitやG7の広島プロセスなど、世界北部で著名なAIガバナンスイニシアチブのいくつかは、AIガバナンスに関する国際対話の多くに影響を与えている。
多くの注意深い物語とアルゴリズム的害の証拠にもかかわらず、AIガバナンスに関する言論の中で、安全と世界的な破滅的または実在的なリスクに関する技術的な問題に関する過度な議論が進行中である。
この絞り込まれた焦点は、現在のAIアプリケーションの残酷な産業化によって引き起こされる社会的および倫理的課題から注目を集める傾向にある。
このような現実的な結果と投機的リスクの可視的ギャップに対処するために,本論文は,基礎モデルと生成AIの社会的,政治的,環境的側面を考慮に入れた重要な枠組みを提供する。
リスクと害の14のカテゴリを特定し、それらの個人的、社会的、および生物圏的影響に応じてそれらをマッピングする。
基礎モデルとその下流応用の最も急激なネガティブな影響に対処するための統合的な視点を提供する。
我々は、この類型学が技術的、規範的な介入にどのように活用され、責任あるAIを前進させるか、という勧告で締めくくります。
関連論文リスト
- Hype, Sustainability, and the Price of the Bigger-is-Better Paradigm in AI [67.58673784790375]
AIパラダイムは、科学的に脆弱なだけでなく、望ましくない結果をもたらすものだ、と私たちは主張する。
第一に、計算要求がモデルの性能よりも早く増加し、不合理な経済要求と不均等な環境フットプリントにつながるため、持続可能ではない。
第二に、健康、教育、気候などの重要な応用は別として、他人を犠牲にして特定の問題に焦点をあてることである。
論文 参考訳(メタデータ) (2024-09-21T14:43:54Z) - Near to Mid-term Risks and Opportunities of Open-Source Generative AI [94.06233419171016]
Generative AIの応用は、科学や医学、教育など、さまざまな分野に革命をもたらすことが期待されている。
こうした地震の影響の可能性は、潜在的なリスクに関する活発な議論を引き起こし、より厳格な規制を要求した。
この規制は、オープンソースのジェネレーティブAIの誕生する分野を危険にさらしている可能性が高い。
論文 参考訳(メタデータ) (2024-04-25T21:14:24Z) - The Social Impact of Generative AI: An Analysis on ChatGPT [0.7401425472034117]
ジェネレーティブAIモデルの急速な開発は、そのメリット、制限、関連するリスクに関する熱い議論を引き起こしている。
生成モデルは、医療、金融、教育など、複数の分野にまたがって大きな可能性を秘めている。
本稿では,ChatGPTの事例を中心に,生成型AIツールの社会的意味を探求する方法論を採用する。
論文 参考訳(メタデータ) (2024-03-07T17:14:22Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - The Global Impact of AI-Artificial Intelligence: Recent Advances and
Future Directions, A Review [0.0]
この記事では、経済的、倫理的、社会的、セキュリティとプライバシ、仕事のずれといった、AIの影響を強調している。
偏見、セキュリティ、プライバシー侵害などの問題を含む、AI開発に関する倫理的懸念について論じている。
この記事は、社会全体にAIが及ぼす影響の認識と理解を促進するために、公的なエンゲージメントと教育の重要性を強調して締めくくっている。
論文 参考訳(メタデータ) (2023-12-22T00:41:21Z) - Survey on AI Ethics: A Socio-technical Perspective [0.9374652839580183]
AIに関連する倫理的懸念には、公正性、プライバシとデータ保護、責任と説明責任、安全性と堅牢性、透明性と説明可能性、環境への影響といった課題が含まれている。
この研究は、AIを社会に展開する際の現在と将来の倫理的懸念を統一する。
論文 参考訳(メタデータ) (2023-11-28T21:00:56Z) - A Review of the Ethics of Artificial Intelligence and its Applications
in the United States [0.0]
この論文は、AIが米国経済のあらゆる分野に与える影響と、ビジネス、政府、アカデミック、そして市民社会にまたがる組織に与える影響を強調している。
我々の議論は、包括的なテーマとして構成された11の基本的な「倫理的原則」を探求する。
これらは透明性、正義、公正、平等、非正当性、責任、説明責任、プライバシー、利益、自由、自律、信頼、尊厳、持続可能性、連帯性を含む。
論文 参考訳(メタデータ) (2023-10-09T14:29:00Z) - Applications and Societal Implications of Artificial Intelligence in
Manufacturing: A Systematic Review [0.3867363075280544]
この研究は、AIが企業に与える影響について、以前の文献では概して楽観的な見通しがあることを示している。
この論文は、産業AIの潜在的な社会的影響に関する文脈的視点を提供するために、歴史的事例や他の例に類似している。
論文 参考訳(メタデータ) (2023-07-25T07:17:37Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - Empowering Local Communities Using Artificial Intelligence [70.17085406202368]
人中心の観点から、AIが社会に与える影響を探求する上で重要なトピックとなっている。
市民科学におけるこれまでの研究は、AIを使って研究に大衆を巻き込む方法を特定してきた。
本稿では,コミュニティ市民科学にAIを適用する上での課題について論じる。
論文 参考訳(メタデータ) (2021-10-05T12:51:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。