論文の概要: Enhancing Trust in LLMs: Algorithms for Comparing and Interpreting LLMs
- arxiv url: http://arxiv.org/abs/2406.01943v1
- Date: Tue, 4 Jun 2024 03:54:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 20:03:30.964358
- Title: Enhancing Trust in LLMs: Algorithms for Comparing and Interpreting LLMs
- Title(参考訳): LLMにおける信頼を高める: LLMの比較と解釈のためのアルゴリズム
- Authors: Nik Bear Brown,
- Abstract要約: 本稿では,大規模言語モデル(LLM)の信頼性と理解を高めるための評価手法について検討する。
主な評価指標は、パープレキシティ測定、NLPメトリクス(BLEU, ROUGE, METEOR, BERTScore, GLEU, Word Error Rate, character Error Rate), Zero-Shot and Few-Shot Learning Performance, Transfer Learning Evaluation, Adversarial Testing, Fairness and Bias Evaluationである。
- 参考スコア(独自算出の注目度): 1.0878040851638
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper surveys evaluation techniques to enhance the trustworthiness and understanding of Large Language Models (LLMs). As reliance on LLMs grows, ensuring their reliability, fairness, and transparency is crucial. We explore algorithmic methods and metrics to assess LLM performance, identify weaknesses, and guide development towards more trustworthy applications. Key evaluation metrics include Perplexity Measurement, NLP metrics (BLEU, ROUGE, METEOR, BERTScore, GLEU, Word Error Rate, Character Error Rate), Zero-Shot and Few-Shot Learning Performance, Transfer Learning Evaluation, Adversarial Testing, and Fairness and Bias Evaluation. We introduce innovative approaches like LLMMaps for stratified evaluation, Benchmarking and Leaderboards for competitive assessment, Stratified Analysis for in-depth understanding, Visualization of Blooms Taxonomy for cognitive level accuracy distribution, Hallucination Score for quantifying inaccuracies, Knowledge Stratification Strategy for hierarchical analysis, and Machine Learning Models for Hierarchy Generation. Human Evaluation is highlighted for capturing nuances that automated metrics may miss. These techniques form a framework for evaluating LLMs, aiming to enhance transparency, guide development, and establish user trust. Future papers will describe metric visualization and demonstrate each approach on practical examples.
- Abstract(参考訳): 本稿では,Large Language Models (LLM) の信頼性と理解を高めるための評価手法について検討する。
LLMへの依存が高まるにつれて、信頼性、公平性、透明性の確保が重要になります。
LLMの性能を評価し、弱点を特定し、より信頼性の高いアプリケーションに向けた開発を導くアルゴリズム手法とメトリクスについて検討する。
主な評価指標は、パープレキシティ測定、NLPメトリクス(BLEU, ROUGE, METEOR, BERTScore, GLEU, Word Error Rate, character Error Rate), Zero-Shot and Few-Shot Learning Performance, Transfer Learning Evaluation, Adversarial Testing, Fairness and Bias Evaluationである。
階層化評価のためのLCMMaps、競争評価のためのベンチマークとリーダーボード、深い理解のための階層分析、認知レベルの精度分布のためのブルーム分類の可視化、不正確性の定量化のための幻覚スコア、階層分析のための知識階層化戦略、階層生成のための機械学習モデルを導入する。
自動メトリクスが見逃す可能性のあるニュアンスをキャプチャするために、ヒューマン評価が強調される。
これらの技術は、透明性を高め、開発をガイドし、ユーザ信頼を確立することを目的として、LCMを評価するためのフレームワークを形成する。
今後の論文では、メトリクスの可視化について記述し、実例でそれぞれのアプローチを実証する。
関連論文リスト
- Decoding AI Judgment: How LLMs Assess News Credibility and Bias [0.0]
大規模言語モデル(LLM)は、ニュースの信頼性を評価するためにますます使われているが、これらの判断の仕方についてはほとんど分かっていない。
本研究では、構造化された専門家主導のレーティングシステムに対して、最先端のLCMの信頼性と政治的分類をベンチマークする。
キーワード頻度, 文脈決定要因, ランク分布を調べることで, LLMが特定の言語特徴と信頼性をどのように関連付けるかを明らかにする。
論文 参考訳(メタデータ) (2025-02-06T18:52:10Z) - Training an LLM-as-a-Judge Model: Pipeline, Insights, and Practical Lessons [9.954960702259918]
本稿では,文脈認識評価を行うLLM(en:en:en:en:en:en:en:en:LLMs)ジャッジであるThemisを紹介する。
Themisの開発パイプラインの概要を概観し、シナリオに依存した評価プロンプトを強調します。
メタ評価のための人間ラベル付きベンチマークを2つ導入し、テミスが人間の嗜好を経済的に高度に調整できることを実証した。
論文 参考訳(メタデータ) (2025-02-05T08:35:55Z) - CodEv: An Automated Grading Framework Leveraging Large Language Models for Consistent and Constructive Feedback [0.0]
本研究では,Large Language Models (LLMs)を活用して,一貫した構築的フィードバックを提供する自動階調フレームワークCodEvを提案する。
また,LCMアンサンブルを統合してスコアの精度と一貫性を向上させるとともに,信頼性の高いフィードバックとコードレビューコメントを提供する合意テストを実施している。
論文 参考訳(メタデータ) (2025-01-10T03:09:46Z) - The Vulnerability of Language Model Benchmarks: Do They Accurately Reflect True LLM Performance? [1.3810901729134184]
大きな言語モデル(LLM)は、真の言語理解と適応性を示すのに失敗しながら、標準化されたテストで優れている。
NLP評価フレームワークの系統的解析により,評価スペクトルにまたがる広範囲にわたる脆弱性が明らかになった。
我々は、操作に抵抗し、データの汚染を最小限に抑え、ドメイン固有のタスクを評価する新しい評価方法の土台を築いた。
論文 参考訳(メタデータ) (2024-12-02T20:49:21Z) - MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs [97.94579295913606]
MLLM(Multimodal Large Language Models)は、産業と学術の両方から注目を集めている。
開発プロセスでは、モデルの改善に関する直感的なフィードバックとガイダンスを提供するため、評価が重要である。
この研究は、研究者に異なるニーズに応じてMLLMを効果的に評価する方法を簡単に把握し、より良い評価方法を促すことを目的としている。
論文 参考訳(メタデータ) (2024-11-22T18:59:54Z) - How Reliable are LLMs as Knowledge Bases? Re-thinking Facutality and Consistency [60.25969380388974]
大規模言語モデル (LLM) は知識ベース (KB) として研究されている。
現在の評価手法は、信頼性の高い性能の他の決定的な基準を見越して、知識の保持に過度に焦点を絞っている。
我々は,事実と一貫性を定量化するための新しい基準と指標を提案し,最終的な信頼性スコアを導いた。
論文 参考訳(メタデータ) (2024-07-18T15:20:18Z) - DnA-Eval: Enhancing Large Language Model Evaluation through Decomposition and Aggregation [75.81096662788254]
大規模言語モデル(LLM)はスケーラブルで経済的な評価指標である。
これらの評価者がどの程度信頼できるかという問題は、重要な研究課題として浮上している。
本稿では,デコンプリートとアグリゲートを提案し,その評価プロセスを教育実践に基づいて異なる段階に分解する。
論文 参考訳(メタデータ) (2024-05-24T08:12:30Z) - Comprehensive Reassessment of Large-Scale Evaluation Outcomes in LLMs: A Multifaceted Statistical Approach [64.42462708687921]
評価の結果、スケーリング、トレーニングタイプ、アーキテクチャなどの要因がLLMのパフォーマンスに大きな影響を与えていることが明らかになった。
本研究は, これらのLCMの徹底的な再検討に着手し, 現状評価手法における不整合性に着目した。
これには、ANOVA、Tukey HSDテスト、GAMM、クラスタリング技術などが含まれる。
論文 参考訳(メタデータ) (2024-03-22T14:47:35Z) - Evaluating Large Language Models at Evaluating Instruction Following [54.49567482594617]
我々は,命令追従出力の識別におけるLLM評価器の能力をテストするために,挑戦的なメタ評価ベンチマーク LLMBar を導入する。
異なる評価器がLLMBarに対して異なる性能を示し、最高の評価器でさえ改善の余地があることが判明した。
論文 参考訳(メタデータ) (2023-10-11T16:38:11Z) - KoLA: Carefully Benchmarking World Knowledge of Large Language Models [87.96683299084788]
我々は知識指向LLMアセスメントベンチマーク(KoLA)を構築した。
人間の認知を模倣して、知識関連能力の4段階の分類を形成し、19ドルのタスクをカバーします。
私たちは、LLMによって事前訓練されたコーパスであるウィキペディアと、継続的に収集された新興コーパスを使用して、目に見えないデータや進化する知識を扱う能力を評価します。
論文 参考訳(メタデータ) (2023-06-15T17:20:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。