Investigating controlled teleportation capability of quantum states with respect to $k$-separability
- URL: http://arxiv.org/abs/2406.02115v1
- Date: Tue, 4 Jun 2024 08:53:13 GMT
- Title: Investigating controlled teleportation capability of quantum states with respect to $k$-separability
- Authors: Minjin Choi, Jeonghyeon Shin, Gunho Lee, Eunok Bae,
- Abstract summary: We examine teleportation fidelity in two-party standard teleportation schemes.
For separable states, their teleportation fidelities cannot exceed the threshold.
We extend this analysis to multi-party scenarios known as controlled teleportation.
- Score: 1.480302324573709
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum teleportation is an essential application of quantum entanglement. The examination of teleportation fidelity in two-party standard teleportation schemes reveals a critical threshold distinguishing separable and entangled states. For separable states, their teleportation fidelities cannot exceed the threshold, emphasizing the significance of entanglement. We extend this analysis to multi-party scenarios known as controlled teleportation. Our study provides thresholds that $N$-qudit $k$-separable states cannot exceed in a controlled teleportation scheme, where $N \ge 3$ and $2 \le k \le N$. This not only establishes a standard for utilizing a given quantum state as a resource in controlled teleportation but also enhances our understanding of the influence of the entanglement structure on controlled teleportation performance. In addition, we show that genuine multipartite entanglement is not a prerequisite for achieving a high controlled teleportation capability.
Related papers
- Second Law of Entanglement Manipulation with Entanglement Battery [41.94295877935867]
A central question since the beginning of quantum information science is how two distant parties can convert one entangled state into another.
It has been conjectured that entangled state transformations could be executed reversibly in an regime, mirroring the nature of Carnot cycles in classical thermodynamics.
We investigate the concept of an entanglement battery, an auxiliary quantum system that facilitates quantum state transformations without a net loss of entanglement.
arXiv Detail & Related papers (2024-05-17T07:55:04Z) - The effect of noisy environment on Secure Quantum Teleportation of
uni-modal Gaussian states [0.0]
Quantum communication networks can be built on quantum teleportation.
We use a continuous variable two-mode squeezed vacuum state as a resource state for the quantum teleportation.
We show that the temperature, dissipation rate and squeezing parameter of the squeezed thermal reservoir limit the feasible duration for secure quantum teleportation.
arXiv Detail & Related papers (2023-09-04T17:35:55Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Higher order traps for some strongly degenerate quantum control systems [56.47577824219207]
Quantum control is necessary for a variety of modern quantum technologies as it allows to optimally manipulate quantum systems.
An important problem in quantum control is to establish whether the control objective functional has trapping behaviour or no.
We show that traps of arbitrarily high order exist for controllable quantum systems with special symmetry in the Hamiltonian.
arXiv Detail & Related papers (2023-04-06T20:08:36Z) - Improving the probabilistic quantum teleportation efficiency of
arbitrary superposed coherent state using multipartite even and odd j-spin
coherent states as resource [0.0]
Quantum teleportation is one of the most important techniques for quantum information secure transmission.
We provide a new probabilistic teleportation scheme for arbitrary superposed coherent states.
We show that the perfect quantum teleportation can be done even with a non-maximally entangled state.
arXiv Detail & Related papers (2022-02-17T11:16:12Z) - Remote sensing and faithful quantum teleportation through non-localized
qubits [0.0]
In this paper, we address the idea of remote sensing in a teleportation scenario with topological qubits more robust against noise.
We show that how this nonlocal property, helps us to achieve near-perfect quantum teleportation even with mixed quantum states.
arXiv Detail & Related papers (2021-09-11T13:23:30Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Deterministic Teleportation and Universal Computation Without Particle
Exchange [0.0]
Teleportation is a cornerstone of quantum technologies, and has played a key role in the development of quantum information theory.
Here, we apply a different aspect of quantumness to teleportation -- namely exchange-free computation at a distance.
The controlled-phase universal gate we propose, allows complete Bell detection among two remote parties, and is experimentally feasible.
arXiv Detail & Related papers (2020-09-11T17:51:58Z) - Generalization of port-based teleportation and controlled teleportation
capability [1.6114012813668934]
Port-based teleportation is a variant of the original quantum teleportation.
We construct a concept of the controlled port-based teleportation by combining the controlled teleportation with the port-based teleportation.
arXiv Detail & Related papers (2020-02-28T11:06:16Z) - Teleporting quantum information encoded in fermionic modes [62.997667081978825]
We consider teleportation of quantum information encoded in modes of a fermionic field.
In particular, one is forced to distinguish between single-mode entanglement swapping, and qubit teleportation with or without authentication.
arXiv Detail & Related papers (2020-02-19T14:15:16Z) - Stable transmission of high-dimensional quantum states over a 2 km
multicore fiber [45.82374977939355]
We prove how path encoded high-dimensional quantum states can be reliably transmitted over a 2 km long multicore fiber.
We take advantage of a phase-locked loop system guaranteeing a stable interferometric detection.
arXiv Detail & Related papers (2020-01-30T09:19:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.