論文の概要: Almost linear time differentially private release of synthetic graphs
- arxiv url: http://arxiv.org/abs/2406.02156v1
- Date: Tue, 4 Jun 2024 09:44:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 17:01:41.453053
- Title: Almost linear time differentially private release of synthetic graphs
- Title(参考訳): 合成グラフのほぼ線形時間微分プライベートな解法
- Authors: Jingcheng Liu, Jalaj Upadhyay, Zongrui Zou,
- Abstract要約: 本稿では,指数関数的メカニズムから,ほぼ線形時間と空間のアルゴリズムをサンプリングする。
直接的な結果として、差分入力を指数関数的に大きな$G$mエッジとして定義する。
これらは合成グラフを公開するためのプライベートファーストのプライベートアルゴリズムである。
- 参考スコア(独自算出の注目度): 6.076406622352115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we give an almost linear time and space algorithms to sample from an exponential mechanism with an $\ell_1$-score function defined over an exponentially large non-convex set. As a direct result, on input an $n$ vertex $m$ edges graph $G$, we present the \textit{first} $\widetilde{O}(m)$ time and $O(m)$ space algorithms for differentially privately outputting an $n$ vertex $O(m)$ edges synthetic graph that approximates all the cuts and the spectrum of $G$. These are the \emph{first} private algorithms for releasing synthetic graphs that nearly match this task's time and space complexity in the non-private setting while achieving the same (or better) utility as the previous works in the more practical sparse regime. Additionally, our algorithms can be extended to private graph analysis under continual observation.
- Abstract(参考訳): 本稿では、指数的に大きな非凸集合上で定義される$\ell_1$-score関数を持つ指数メカニズムから、ほぼ線形時間と空間のアルゴリズムをサンプリングする。
直接的な結果として、$n$ vertex $m$ edges graph $G$を入力すると、すべてのカットと$G$のスペクトルを近似する$n$ vertex $O(m)$ edges synthetic graphを差分的に出力するための \textit{first} $\widetilde{O}(m)$ time and $O(m)$ space algorithmを示す。
これらは、このタスクの時間と空間の複雑さとほぼ一致した合成グラフを非プライベート設定でリリースするアルゴリズムである。
さらに,我々のアルゴリズムは連続観測下でのプライベートグラフ解析にも拡張可能である。
関連論文リスト
- Faster Private Minimum Spanning Trees [11.72102598708538]
本稿では,時間内で動作中の既存手法の実用性に適合する新しい差分プライベートMSTアルゴリズムを提案する。
我々は,少なくとも$O(n2)$カットエッジを$O(sqrtn log n)$ timeでサンプリングすることのできるデータ構造を示す。
論文 参考訳(メタデータ) (2024-08-13T16:00:30Z) - Graph Unfolding and Sampling for Transitory Video Summarization via Gershgorin Disc Alignment [48.137527345353625]
携帯電話からYouTubeやTikTokなどのソーシャルメディアサイトにアップロードされたユーザー生成ビデオ(UGV)は、短くて繰り返しではない。
我々は、ガーシュゴリンディスクアライメント(GDA)に基づく高速グラフサンプリングにより、遷移UGVを複数のディスクに線形時間で要約する。
提案アルゴリズムは,最先端の手法と比較して,映像の要約性能が向上し,複雑さが大幅に低減されていることを示す。
論文 参考訳(メタデータ) (2024-08-03T20:08:02Z) - Online Learning with Feedback Graphs: The True Shape of Regret [82.00098840619847]
ミニマックスの後悔は任意のグラフと時間的地平線に対して$R*$に比例することを示す。
複雑な探索戦略を導入し、最小限の最小後悔境界を達成する主アルゴリズムを定義する。
論文 参考訳(メタデータ) (2023-06-05T15:35:00Z) - On the Unlikelihood of D-Separation [69.62839677485087]
解析的な証拠として、大きなグラフ上では、d-分離は存在が保証されたとしても珍しい現象である。
PCアルゴリズムでは、その最悪ケース保証がスパースグラフで失敗することが知られているが、平均ケースでも同じことが言える。
UniformSGSでは、既存のエッジに対してランニング時間が指数的であることが知られているが、平均的な場合、それは既存のほとんどのエッジにおいても期待されるランニング時間であることを示す。
論文 参考訳(メタデータ) (2023-03-10T00:11:18Z) - Correlation Clustering Algorithm for Dynamic Complete Signed Graphs: An
Index-based Approach [9.13755431537592]
本稿では,相関クラスタリング問題を$O(mtimesleft(2+ alpha (G) right)+n)$から$O(m+n)$に近似する複雑性を,完全符号グラフに対して$varepsilon$とする。
提案手法は,元のアルゴリズムと同じ出力を与え,そのアルゴリズムをフルダイナミックな設定で実装できるようにする。
論文 参考訳(メタデータ) (2023-01-01T10:57:36Z) - Fast Computation of Generalized Eigenvectors for Manifold Graph
Embedding [38.902986549367434]
我々は、高速実行に既存の高速極端固有ベクトル計算アルゴリズムを利用する。
我々の埋め込みは文献の中では最速であり、多様体グラフのクラスタリング性能は最高のものとなっている。
論文 参考訳(メタデータ) (2021-12-15T03:45:39Z) - Finding the KT partition of a weighted graph in near-linear time [1.572727650614088]
カワラバヤシとソープは、単純なグラフ $G = (V,E)$ の最小カットに対して、ほぼ自明な時間決定論的アルゴリズムを与えた。
重み付きグラフの$(1+varepsilon)$-KTパーティションを見つけるために、線形に近い時間ランダム化アルゴリズムを与える。
論文 参考訳(メタデータ) (2021-11-02T05:26:10Z) - Fast Graph Sampling for Short Video Summarization using Gershgorin Disc
Alignment [52.577757919003844]
高速グラフサンプリングの最近の進歩を利用して,短い動画を複数の段落に効率よく要約する問題について検討する。
実験結果から,本アルゴリズムは最先端の手法と同等の映像要約を実現し,複雑さを大幅に低減した。
論文 参考訳(メタデータ) (2021-10-21T18:43:00Z) - Sublinear Time and Space Algorithms for Correlation Clustering via
Sparse-Dense Decompositions [9.29659220237395]
本稿では,相関クラスタリングの解法を提案する。
我々は高効率な時間と空間の複雑さを持つサブ線形アルゴリズムを得る。
提案手法の主な要素はスパース線グラフ分解への新規な接続である。
論文 参考訳(メタデータ) (2021-09-29T16:25:02Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
対数要因まで $(varepsilon,delta)$-differently private の最適過剰人口損失は $sqrtlog(d)/n + sqrtd/varepsilon n.$ です。
損失関数がさらなる滑らかさの仮定を満たすとき、余剰損失は$sqrtlog(d)/n + (log(d)/varepsilon n)2/3で上界(対数因子まで)であることが示される。
論文 参考訳(メタデータ) (2021-03-02T06:53:44Z) - Streaming Complexity of SVMs [110.63976030971106]
本稿では,ストリーミングモデルにおけるバイアス正規化SVM問題を解く際の空間複雑性について検討する。
両方の問題に対して、$frac1lambdaepsilon$の次元に対して、$frac1lambdaepsilon$よりも空間的に小さいストリーミングアルゴリズムを得ることができることを示す。
論文 参考訳(メタデータ) (2020-07-07T17:10:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。