論文の概要: Query-Enhanced Adaptive Semantic Path Reasoning for Inductive Knowledge Graph Completion
- arxiv url: http://arxiv.org/abs/2406.02205v1
- Date: Tue, 4 Jun 2024 11:02:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 16:42:06.239953
- Title: Query-Enhanced Adaptive Semantic Path Reasoning for Inductive Knowledge Graph Completion
- Title(参考訳): 帰納的知識グラフ補完のためのクエリ強化適応意味経路推論
- Authors: Kai Sun, Jiapu Wang, Huajie Jiang, Yongli Hu, Baocai Yin,
- Abstract要約: 本稿では Query-Enhanced Adaptive Semantic Path Reasoning (QASPR) フレームワークを提案する。
QASPRは、帰納的KGCタスクを強化するために、KGの構造情報と意味情報の両方をキャプチャする。
実験の結果,QASPRは最先端の性能を達成できた。
- 参考スコア(独自算出の注目度): 45.9995456784049
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conventional Knowledge graph completion (KGC) methods aim to infer missing information in incomplete Knowledge Graphs (KGs) by leveraging existing information, which struggle to perform effectively in scenarios involving emerging entities. Inductive KGC methods can handle the emerging entities and relations in KGs, offering greater dynamic adaptability. While existing inductive KGC methods have achieved some success, they also face challenges, such as susceptibility to noisy structural information during reasoning and difficulty in capturing long-range dependencies in reasoning paths. To address these challenges, this paper proposes the Query-Enhanced Adaptive Semantic Path Reasoning (QASPR) framework, which simultaneously captures both the structural and semantic information of KGs to enhance the inductive KGC task. Specifically, the proposed QASPR employs a query-dependent masking module to adaptively mask noisy structural information while retaining important information closely related to the targets. Additionally, QASPR introduces a global semantic scoring module that evaluates both the individual contributions and the collective impact of nodes along the reasoning path within KGs. The experimental results demonstrate that QASPR achieves state-of-the-art performance.
- Abstract(参考訳): 従来の知識グラフ補完(KGC)手法は、未完成な知識グラフ(KG)の不足情報を既存の情報を活用することによって推論することを目的としている。
帰納的KGC法はKGの出現する実体と関係を扱うことができ、よりダイナミックな適応性を提供する。
既存の帰納的KGC法はいくつかの成功をおさめたが、推論における構造情報のノイズへの感受性や、推論経路における長距離依存性の取得の難しさといった課題に直面している。
これらの課題に対処するために,KGの構造的情報と意味的情報の両方を同時にキャプチャして帰納的KGCタスクを強化する,Query-Enhanced Adaptive Semantic Path Reasoning (QASPR) フレームワークを提案する。
具体的には、QASPRでは、クエリ依存マスキングモジュールを使用して、ターゲットと密接に関連する重要な情報を保持しながら、ノイズの多い構造情報を適応的にマスキングする。
さらに、QASPRはグローバルなセマンティックスコアリングモジュールを導入し、KG内の推論パスに沿って、個々のコントリビューションとノードの集団的影響を評価する。
実験の結果,QASPRは最先端の性能を発揮することが示された。
関連論文リスト
- Deep Sparse Latent Feature Models for Knowledge Graph Completion [24.342670268545085]
本稿では,知識グラフのためのスパース潜在特徴モデルの新たなフレームワークを提案する。
我々のアプローチは、欠落した三重項を効果的に完成するだけでなく、潜伏構造の明確な解釈可能性も提供する。
提案手法は,潜在コミュニティを明らかにし,解釈可能な表現を生成することにより,性能を著しく向上させる。
論文 参考訳(メタデータ) (2024-11-24T03:17:37Z) - An Adaptive Framework for Generating Systematic Explanatory Answer in Online Q&A Platforms [62.878616839799776]
質問応答(QA)性能を向上させるために設計された,革新的なフレームワークであるSynthRAGを提案する。
SynthRAGは動的コンテンツの構造化に適応的なアウトラインを用いることで従来のモデルを改善する。
Zhihuプラットフォーム上のオンラインデプロイメントでは、SynthRAGの回答が注目すべきユーザエンゲージメントを実現していることが明らかになった。
論文 参考訳(メタデータ) (2024-10-23T09:14:57Z) - StructRAG: Boosting Knowledge Intensive Reasoning of LLMs via Inference-time Hybrid Information Structurization [94.31508613367296]
Retrieval-augmented Generation(RAG)は、大規模言語モデル(LLM)を効果的に強化する鍵となる手段である。
本稿では,手前のタスクに対して最適な構造型を識別し,元の文書をこの構造化形式に再構成し,その結果に基づいて回答を推測するStructRAGを提案する。
実験の結果、StructRAGは最先端のパフォーマンスを実現し、特に挑戦的なシナリオに優れていた。
論文 参考訳(メタデータ) (2024-10-11T13:52:44Z) - Context Graph [8.02985792541121]
本稿では,大規模言語モデル(LLM)を活用して候補エンティティや関連するコンテキストを検索する,コンテキストグラフ推論のtextbfCGR$3$パラダイムを提案する。
実験の結果、CGR$3$はKG完了(KGC)およびKG質問応答(KGQA)タスクの性能を著しく向上させることが示された。
論文 参考訳(メタデータ) (2024-06-17T02:59:19Z) - Explore then Determine: A GNN-LLM Synergy Framework for Reasoning over Knowledge Graph [38.31983923708175]
本稿では,知識グラフ(KGQA)に関する質問応答について述べる。
グラフニューラルネットワーク(GNN)とLarge Language Modelsを相乗化してKGを推論するExplore-then-Determine(EtD)フレームワークを提案する。
EtDは最先端のパフォーマンスを達成し、忠実な推論結果を生成する。
論文 参考訳(メタデータ) (2024-06-03T09:38:28Z) - KG-RAG: Bridging the Gap Between Knowledge and Creativity [0.0]
大規模言語モデルエージェント(LMA)は、情報幻覚、破滅的な忘れ込み、長いコンテキストの処理における制限といった問題に直面している。
本稿では,LMAの知識能力を高めるため,KG-RAG (Knowledge Graph-Retrieval Augmented Generation)パイプラインを提案する。
ComplexWebQuestionsデータセットに関する予備実験では、幻覚的コンテンツの削減において顕著な改善が示されている。
論文 参考訳(メタデータ) (2024-05-20T14:03:05Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
我々は、差別的かつ生成的なKGCフレームワークと互換性のあるプラグイン・アンド・プレイ方式であるContextualization Distillation戦略を導入する。
提案手法は,大規模言語モデルに対して,コンパクトで構造的な三重項を文脈に富んだセグメントに変換するように指示することから始まる。
多様なデータセットとKGC技術にわたる総合的な評価は、我々のアプローチの有効性と適応性を強調している。
論文 参考訳(メタデータ) (2024-01-28T08:56:49Z) - Anchoring Path for Inductive Relation Prediction in Knowledge Graphs [69.81600732388182]
APSTはAPとCPを統一されたSentence Transformerアーキテクチャの入力として扱う。
我々は3つの公開データセット上でAPSTを評価し、36のトランスダクティブ、インダクティブ、および数ショットの実験的設定のうち30の最先端(SOTA)性能を達成する。
論文 参考訳(メタデータ) (2023-12-21T06:02:25Z) - KG-ECO: Knowledge Graph Enhanced Entity Correction for Query Rewriting [15.243664083941287]
本稿では,KG-ECO: Knowledge Graphによるクエリ書き換えのためのEntity Correctionの強化を提案する。
モデルの性能を向上させるため,我々は知識グラフ(KG)を組み込んでエンティティ構造情報を提供する。
実験結果から,本手法は2つのベースラインに対して明らかな性能向上をもたらすことが示された。
論文 参考訳(メタデータ) (2023-02-21T05:42:06Z) - QA-GNN: Reasoning with Language Models and Knowledge Graphs for Question
Answering [122.84513233992422]
学習済み言語モデル(LM)と知識グラフ(KG)の知識を用いて質問に答える問題に対処する新しいモデルであるQA-GNNを提案する。
既存のLMとLM+KGモデルに対する改善と、解釈可能で構造化された推論を行う能力を示しています。
論文 参考訳(メタデータ) (2021-04-13T17:32:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。