論文の概要: Optimised ProPainter for Video Diminished Reality Inpainting
- arxiv url: http://arxiv.org/abs/2406.02287v1
- Date: Tue, 4 Jun 2024 13:00:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 16:20:58.020371
- Title: Optimised ProPainter for Video Diminished Reality Inpainting
- Title(参考訳): 映像のデミネート・リアリティ・インペインティングのためのProPainterの最適化
- Authors: Pengze Li, Lihao Liu, Carola-Bibiane Schönlieb, Angelica I Aviles-Rivero,
- Abstract要約: 医用画像の専門的要求を満たすため,ProPainter法から最適化した精細な映像塗装技術を導入する。
我々の拡張アルゴリズムは、最適化されたパラメータと前処理を特徴とするゼロショットProPainterを用いて、手術用ビデオシーケンスをインペイントする複雑なタスクを積極的に管理する。
閉鎖領域の時間的一貫性と詳細に富んだ再構築を図り、手術現場のより明確な視認を促進することを目的としている。
- 参考スコア(独自算出の注目度): 11.041287549641547
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, part of the DREAMING Challenge - Diminished Reality for Emerging Applications in Medicine through Inpainting, we introduce a refined video inpainting technique optimised from the ProPainter method to meet the specialised demands of medical imaging, specifically in the context of oral and maxillofacial surgery. Our enhanced algorithm employs the zero-shot ProPainter, featuring optimized parameters and pre-processing, to adeptly manage the complex task of inpainting surgical video sequences, without requiring any training process. It aims to produce temporally coherent and detail-rich reconstructions of occluded regions, facilitating clearer views of operative fields. The efficacy of our approach is evaluated using comprehensive metrics, positioning it as a significant advancement in the application of diminished reality for medical purposes.
- Abstract(参考訳): 本稿では,DREAMING Challenge - Diminished Reality for Emerging Applications in Medicine through Inpaintingの一環として,ProPainter法から最適化した高精細ビデオ塗装技術を導入する。
我々の拡張アルゴリズムでは、最適化されたパラメータと前処理を特徴とするゼロショットProPainterを用いて、トレーニング処理を必要とせずに、手術用ビデオシーケンスを塗布する複雑なタスクを緊急に管理する。
閉鎖領域の時間的一貫性と詳細に富んだ再構築を図り、手術現場のより明確な視認を促進することを目的としている。
本手法の有効性は包括的指標を用いて評価し,医学的目的に減退した現実の応用において重要な進歩と位置づけた。
関連論文リスト
- Novel computational workflows for natural and biomedical image processing based on hypercomplex algebras [49.81327385913137]
ハイパーコンプレックス画像処理は、代数的および幾何学的原理を含む統一パラダイムで従来の手法を拡張している。
このワークル平均は、自然・生体画像解析のための四元数と2次元平面(四元数 - ピクセルを表す - を2次元平面に分割する)を分割する。
提案手法は、画像の自動処理パイプラインの一部として、カラー外観(例えば、代替リフレクションやグレースケール変換)と画像コントラストを規制することができる。
論文 参考訳(メタデータ) (2025-02-11T18:38:02Z) - SSDD-GAN: Single-Step Denoising Diffusion GAN for Cochlear Implant Surgical Scene Completion [4.250558597144547]
本研究は, 人工乳頭切除データセットの外科的シーンを完了するための効率的な方法を提案する。
我々のアプローチは、実際の外科的データセットにおける自己教師付き学習を活用して、単一ステップのDNOD-GAN(SSDD-GAN)を訓練する。
トレーニングされたモデルは、ゼロショットアプローチを用いて、合成後乳頭切除データセットに直接適用される。
論文 参考訳(メタデータ) (2025-02-08T22:04:22Z) - Efficient MedSAMs: Segment Anything in Medical Images on Laptop [69.28565867103542]
我々は,迅速な医用画像のセグメンテーションに特化した初の国際コンペを組織した。
トップチームは軽量なセグメンテーション基盤モデルを開発し、効率的な推論パイプラインを実装した。
最高のパフォーマンスのアルゴリズムは、臨床導入を促進するために、ユーザフレンドリーなインターフェースを備えたオープンソースソフトウェアに組み込まれている。
論文 参考訳(メタデータ) (2024-12-20T17:33:35Z) - Deep intra-operative illumination calibration of hyperspectral cameras [73.08443963791343]
ハイパースペクトルイメージング (HSI) は, 様々な手術応用に期待できる新しい画像モダリティとして出現している。
手術室における照明条件の動的変化がHSIアプリケーションの性能に劇的な影響を及ぼすことを示す。
手術中におけるハイパースペクトル画像の自動再構成のための新しい学習ベースアプローチを提案する。
論文 参考訳(メタデータ) (2024-09-11T08:30:03Z) - SurgicalGaussian: Deformable 3D Gaussians for High-Fidelity Surgical Scene Reconstruction [17.126895638077574]
内視鏡的ビデオにおける変形性組織の動的再構成は、ロボット支援手術の鍵となる技術である。
NeRFは、シーン内のオブジェクトの複雑な詳細をキャプチャするのに苦労します。
我々のネットワークは、レンダリング品質、レンダリング速度、GPU使用率など、多くの面で既存の手法よりも優れています。
論文 参考訳(メタデータ) (2024-07-06T09:31:30Z) - FLex: Joint Pose and Dynamic Radiance Fields Optimization for Stereo Endoscopic Videos [79.50191812646125]
内視鏡的シーンの再構築は、外科手術後の分析から教育訓練まで、様々な医療応用にとって重要な要素である。
変形組織の非常にダイナミックな環境下での移動内視鏡の挑戦的なセットアップに着目する。
複数重重なり合う4次元ニューラルラジアンスフィールド(NeRF)への暗黙的なシーン分離と、再構成とカメラのスクラッチからのポーズを協調的に最適化するプログレッシブ最適化手法を提案する。
これにより、使いやすさが向上し、5000フレーム以上の手術ビデオの処理に間に合うように復元能力を拡張できる。
論文 参考訳(メタデータ) (2024-03-18T19:13:02Z) - An Automated Real-Time Approach for Image Processing and Segmentation of Fluoroscopic Images and Videos Using a Single Deep Learning Network [2.752817022620644]
人工膝関節における画像分割に機械学習を用いる可能性は、そのセグメンテーション精度を改善し、プロセスを自動化し、外科医にリアルタイムの補助を提供する能力にある。
本稿では, リアルタイム全膝画像分割における深層学習手法を提案する。
大規模なデータセットに基づいてトレーニングされた深層学習モデルは、インプラントされた大腿骨とティアビアの両方を正確にセグメント化する際、優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-23T05:00:02Z) - Learning How To Robustly Estimate Camera Pose in Endoscopic Videos [5.073761189475753]
カメラポーズ推定における2つの幾何学的損失を最小限に抑えるために,奥行きと光学的流れを推定するステレオ内視鏡の解を提案する。
最も重要なことは、入力画像の内容に応じてコントリビューションのバランスをとるために、2つの学習された画素単位の重みマッピングを導入することである。
パブリックなSCAREDデータセットに対する我々のアプローチを検証するとともに、新たなインビボデータセットであるStereoMISを導入しています。
論文 参考訳(メタデータ) (2023-04-17T07:05:01Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Searching for Efficient Architecture for Instrument Segmentation in
Robotic Surgery [58.63306322525082]
ほとんどのアプリケーションは、高解像度の外科画像の正確なリアルタイムセグメンテーションに依存している。
我々は,高解像度画像のリアルタイム推論を行うために調整された,軽量で高効率なディープ残差アーキテクチャを設計する。
論文 参考訳(メタデータ) (2020-07-08T21:38:29Z) - Spatiotemporal-Aware Augmented Reality: Redefining HCI in Image-Guided
Therapy [39.370739217840594]
拡張現実(AR)はこの10年で手術室に導入されている。
本稿では、ヘッドマウントディスプレイの利点をフル活用して、模範的な可視化をいかに再定義するかを示す。
X線画像の幾何学的および物理的特性からシステムの認識は、異なるヒューマン・マシン・インタフェースの再定義を可能にする。
論文 参考訳(メタデータ) (2020-03-04T18:59:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。