論文の概要: Optimised ProPainter for Video Diminished Reality Inpainting
- arxiv url: http://arxiv.org/abs/2406.02287v1
- Date: Tue, 4 Jun 2024 13:00:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 16:20:58.020371
- Title: Optimised ProPainter for Video Diminished Reality Inpainting
- Title(参考訳): 映像のデミネート・リアリティ・インペインティングのためのProPainterの最適化
- Authors: Pengze Li, Lihao Liu, Carola-Bibiane Schönlieb, Angelica I Aviles-Rivero,
- Abstract要約: 医用画像の専門的要求を満たすため,ProPainter法から最適化した精細な映像塗装技術を導入する。
我々の拡張アルゴリズムは、最適化されたパラメータと前処理を特徴とするゼロショットProPainterを用いて、手術用ビデオシーケンスをインペイントする複雑なタスクを積極的に管理する。
閉鎖領域の時間的一貫性と詳細に富んだ再構築を図り、手術現場のより明確な視認を促進することを目的としている。
- 参考スコア(独自算出の注目度): 11.041287549641547
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, part of the DREAMING Challenge - Diminished Reality for Emerging Applications in Medicine through Inpainting, we introduce a refined video inpainting technique optimised from the ProPainter method to meet the specialised demands of medical imaging, specifically in the context of oral and maxillofacial surgery. Our enhanced algorithm employs the zero-shot ProPainter, featuring optimized parameters and pre-processing, to adeptly manage the complex task of inpainting surgical video sequences, without requiring any training process. It aims to produce temporally coherent and detail-rich reconstructions of occluded regions, facilitating clearer views of operative fields. The efficacy of our approach is evaluated using comprehensive metrics, positioning it as a significant advancement in the application of diminished reality for medical purposes.
- Abstract(参考訳): 本稿では,DREAMING Challenge - Diminished Reality for Emerging Applications in Medicine through Inpaintingの一環として,ProPainter法から最適化した高精細ビデオ塗装技術を導入する。
我々の拡張アルゴリズムでは、最適化されたパラメータと前処理を特徴とするゼロショットProPainterを用いて、トレーニング処理を必要とせずに、手術用ビデオシーケンスを塗布する複雑なタスクを緊急に管理する。
閉鎖領域の時間的一貫性と詳細に富んだ再構築を図り、手術現場のより明確な視認を促進することを目的としている。
本手法の有効性は包括的指標を用いて評価し,医学的目的に減退した現実の応用において重要な進歩と位置づけた。
関連論文リスト
- SurgicalGaussian: Deformable 3D Gaussians for High-Fidelity Surgical Scene Reconstruction [17.126895638077574]
内視鏡的ビデオにおける変形性組織の動的再構成は、ロボット支援手術の鍵となる技術である。
NeRFは、シーン内のオブジェクトの複雑な詳細をキャプチャするのに苦労します。
我々のネットワークは、レンダリング品質、レンダリング速度、GPU使用率など、多くの面で既存の手法よりも優れています。
論文 参考訳(メタデータ) (2024-07-06T09:31:30Z) - FLex: Joint Pose and Dynamic Radiance Fields Optimization for Stereo Endoscopic Videos [79.50191812646125]
内視鏡的シーンの再構築は、外科手術後の分析から教育訓練まで、様々な医療応用にとって重要な要素である。
変形組織の非常にダイナミックな環境下での移動内視鏡の挑戦的なセットアップに着目する。
複数重重なり合う4次元ニューラルラジアンスフィールド(NeRF)への暗黙的なシーン分離と、再構成とカメラのスクラッチからのポーズを協調的に最適化するプログレッシブ最適化手法を提案する。
これにより、使いやすさが向上し、5000フレーム以上の手術ビデオの処理に間に合うように復元能力を拡張できる。
論文 参考訳(メタデータ) (2024-03-18T19:13:02Z) - An Automated Real-Time Approach for Image Processing and Segmentation of Fluoroscopic Images and Videos Using a Single Deep Learning Network [2.752817022620644]
人工膝関節における画像分割に機械学習を用いる可能性は、そのセグメンテーション精度を改善し、プロセスを自動化し、外科医にリアルタイムの補助を提供する能力にある。
本稿では, リアルタイム全膝画像分割における深層学習手法を提案する。
大規模なデータセットに基づいてトレーニングされた深層学習モデルは、インプラントされた大腿骨とティアビアの両方を正確にセグメント化する際、優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-23T05:00:02Z) - Efficient Deformable Tissue Reconstruction via Orthogonal Neural Plane [58.871015937204255]
変形性組織を再建するための高速直交平面(Fast Orthogonal Plane)を導入する。
我々は外科手術を4Dボリュームとして概念化し、それらをニューラルネットワークからなる静的および動的フィールドに分解する。
この分解により4次元空間が増加し、メモリ使用量が減少し、最適化が高速化される。
論文 参考訳(メタデータ) (2023-12-23T13:27:50Z) - Neural LerPlane Representations for Fast 4D Reconstruction of Deformable
Tissues [52.886545681833596]
LerPlaneは単一視点環境下での手術シーンの高速かつ正確な再構築手法である。
LerPlaneは外科手術を4Dボリュームとして扱い、静的および動的フィールドの明示的な2D平面に分解する。
LerPlaneは静的フィールドを共有し、動的組織モデリングのワークロードを大幅に削減する。
論文 参考訳(メタデータ) (2023-05-31T14:38:35Z) - Learning How To Robustly Estimate Camera Pose in Endoscopic Videos [5.073761189475753]
カメラポーズ推定における2つの幾何学的損失を最小限に抑えるために,奥行きと光学的流れを推定するステレオ内視鏡の解を提案する。
最も重要なことは、入力画像の内容に応じてコントリビューションのバランスをとるために、2つの学習された画素単位の重みマッピングを導入することである。
パブリックなSCAREDデータセットに対する我々のアプローチを検証するとともに、新たなインビボデータセットであるStereoMISを導入しています。
論文 参考訳(メタデータ) (2023-04-17T07:05:01Z) - Neural Radiance Transfer Fields for Relightable Novel-view Synthesis
with Global Illumination [63.992213016011235]
本稿では,ニューラル計算された放射光伝達関数を学習し,新しい視点下でのシーンリライティング手法を提案する。
本手法は,1つの未知の照明条件下で,シーンの実際の画像に対してのみ監視することができる。
その結果, シーンパラメータのアンタングルの復元は, 現状よりも有意に向上していることがわかった。
論文 参考訳(メタデータ) (2022-07-27T16:07:48Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Searching for Efficient Architecture for Instrument Segmentation in
Robotic Surgery [58.63306322525082]
ほとんどのアプリケーションは、高解像度の外科画像の正確なリアルタイムセグメンテーションに依存している。
我々は,高解像度画像のリアルタイム推論を行うために調整された,軽量で高効率なディープ残差アーキテクチャを設計する。
論文 参考訳(メタデータ) (2020-07-08T21:38:29Z) - Spatiotemporal-Aware Augmented Reality: Redefining HCI in Image-Guided
Therapy [39.370739217840594]
拡張現実(AR)はこの10年で手術室に導入されている。
本稿では、ヘッドマウントディスプレイの利点をフル活用して、模範的な可視化をいかに再定義するかを示す。
X線画像の幾何学的および物理的特性からシステムの認識は、異なるヒューマン・マシン・インタフェースの再定義を可能にする。
論文 参考訳(メタデータ) (2020-03-04T18:59:55Z) - Learning Deformable Registration of Medical Images with Anatomical
Constraints [4.397224870979238]
医用画像解析の分野では、変形可能な画像登録が根本的な問題である。
我々は,画像解剖学のグローバルな非線形表現をセグメンテーションマスクを用いて学習し,それらを用いて登録プロセスの制約を行う。
実験により,提案した解剖学的制約付き登録モデルにより,最先端の手法よりも現実的で正確な結果が得られることが示された。
論文 参考訳(メタデータ) (2020-01-20T17:44:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。