論文の概要: System-Aware Neural ODE Processes for Few-Shot Bayesian Optimization
- arxiv url: http://arxiv.org/abs/2406.02352v2
- Date: Sat, 02 Nov 2024 23:30:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:38:04.249673
- Title: System-Aware Neural ODE Processes for Few-Shot Bayesian Optimization
- Title(参考訳): Few-Shot Bayesian Optimizationのためのシステム対応ニューラルネットワークプロセス
- Authors: Jixiang Qing, Becky D Langdon, Robert M Lee, Behrang Shafei, Mark van der Wilk, Calvin Tsay, Ruth Misener,
- Abstract要約: 本稿では,システムの事前情報に基づくベイズ最適化フレームワークについて紹介する。
我々はSANODEPの動的システムにおける数ショットBOの可能性を示す広範囲な実験を行った。
また、SANODEPの様々な事前情報への適応性についても検討し、事前の柔軟性とモデルの適合精度のトレードオフを強調した。
- 参考スコア(独自算出の注目度): 15.581730656797085
- License:
- Abstract: We consider the problem of optimizing initial conditions and termination time in dynamical systems governed by unknown ordinary differential equations (ODEs), where evaluating different initial conditions is costly and the state's value can not be measured in real-time but only with a delay while the measuring device processes the sample. To identify the optimal conditions in limited trials, we introduce a few-shot Bayesian Optimization (BO) framework based on the system's prior information. At the core of our approach is the System-Aware Neural ODE Processes (SANODEP), an extension of Neural ODE Processes (NODEP) designed to meta-learn ODE systems from multiple trajectories using a novel context embedding block. We further develop a two-stage BO framework to effectively incorporate search space constraints, enabling efficient optimization of both initial conditions and observation timings. We conduct extensive experiments showcasing SANODEP's potential for few-shot BO within dynamical systems. We also explore SANODEP's adaptability to varying levels of prior information, highlighting the trade-off between prior flexibility and model fitting accuracy.
- Abstract(参考訳): 本研究では,未知の常微分方程式(ODE)によって支配される力学系の初期条件と終了時間を最適化する問題について考察する。
限定トライアルにおける最適条件を特定するために,システムの事前情報に基づいて,数発のベイズ最適化(BO)フレームワークを導入する。
我々のアプローチの核となるのは、新しいコンテキスト埋め込みブロックを使用して複数の軌道からODEシステムをメタ学習するように設計されたNeural ODE Processes (NODEP)の拡張であるSystem-Aware Neural ODE Processes (SANODEP)である。
さらに,探索空間の制約を効果的に組み込むための2段階のBOフレームワークを開発し,初期条件と観測タイミングの両方を効率的に最適化する。
我々はSANODEPの動的システムにおける数ショットBOの可能性を示す広範囲な実験を行った。
また、SANODEPの様々な事前情報への適応性についても検討し、事前の柔軟性とモデルの適合精度のトレードオフを強調した。
関連論文リスト
- Real-time optimal control of high-dimensional parametrized systems by deep learning-based reduced order models [3.5161229331588095]
複数のシナリオにおけるパラメタライズされたPDEの観点で記述されたシステムの迅速な制御のための,非侵襲的なディープラーニングベースリダクションオーダーモデリング(DL-ROM)手法を提案する。
i)データ生成、(ii)次元削減、および(iii)オフラインフェーズでのニューラルネットワークトレーニングの後、任意のシナリオにおいて、最適制御戦略をオンラインフェーズで迅速に検索することができる。
論文 参考訳(メタデータ) (2024-09-09T15:20:24Z) - A Two-Stage Training Method for Modeling Constrained Systems With Neural
Networks [3.072340427031969]
本稿では,ニューラルネットワークの2段階学習法について詳述する。
最初の段階は、制約違反の尺度を最小化することで、実現可能なNNパラメータを見つけることを目的としている。
第2段階は、許容領域内に留まりながら損失関数を最小化することにより、最適なNNパラメータを見つけることを目的としている。
論文 参考訳(メタデータ) (2024-03-05T07:37:47Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Entropic Neural Optimal Transport via Diffusion Processes [105.34822201378763]
本稿では,連続確率分布間のエントロピー最適輸送(EOT)計画を計算するための新しいアルゴリズムを提案する。
提案アルゴリズムは,シュリンガーブリッジ問題(Schr"odinger Bridge problem)として知られるEOTの動的バージョンのサドル点再構成に基づく。
大規模EOTの従来の手法とは対照的に,我々のアルゴリズムはエンドツーエンドであり,単一の学習ステップで構成されている。
論文 参考訳(メタデータ) (2022-11-02T14:35:13Z) - Neural ODEs as Feedback Policies for Nonlinear Optimal Control [1.8514606155611764]
ニューラルネットワークをパラメータ化した微分方程式として連続時間力学をモデル化するために、ニューラル常微分方程式(ニューラルODE)を用いる。
本稿では,一般非線形最適制御問題の解法としてニューラル・オードとして提案するニューラル・コントロール・ポリシーを提案する。
論文 参考訳(メタデータ) (2022-10-20T13:19:26Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
この研究は、データ駆動メソッドが動的環境でリソース割り当て戦略を継続的に学び、最適化することを可能にする新しいアプローチを開発しています。
学習モデルが新たなエピソードに段階的に適応できるように、連続学習の概念を無線システム設計に組み込むことを提案する。
我々の設計は、異なるデータサンプルにまたがる公平性を保証する、新しい二段階最適化定式化に基づいている。
論文 参考訳(メタデータ) (2021-05-03T07:23:39Z) - Neural ODE Processes [64.10282200111983]
NDP(Neural ODE Process)は、Neural ODEの分布によって決定される新しいプロセスクラスである。
我々のモデルは,少数のデータポイントから低次元システムのダイナミクスを捉えることができることを示す。
論文 参考訳(メタデータ) (2021-03-23T09:32:06Z) - High Dimensional Level Set Estimation with Bayesian Neural Network [58.684954492439424]
本稿では,ベイズニューラルネットワークを用いた高次元レベル集合推定問題を解く新しい手法を提案する。
各問題に対して対応する理論情報に基づく取得関数を導出してデータポイントをサンプリングする。
合成データセットと実世界データセットの数値実験により,提案手法は既存手法よりも優れた結果が得られることが示された。
論文 参考訳(メタデータ) (2020-12-17T23:21:53Z) - Neural-iLQR: A Learning-Aided Shooting Method for Trajectory
Optimization [17.25824905485415]
制約のない制御空間上の学習支援シューティング手法であるNeural-iLQRを提案する。
システムモデルにおける不正確さの存在下で、従来のiLQRよりも著しく優れていることが示されている。
論文 参考訳(メタデータ) (2020-11-21T07:17:28Z) - STEER: Simple Temporal Regularization For Neural ODEs [80.80350769936383]
トレーニング中のODEの終了時刻をランダムにサンプリングする新しい正規化手法を提案する。
提案された正規化は実装が簡単で、オーバーヘッドを無視でき、様々なタスクで有効である。
本稿では,フローの正規化,時系列モデル,画像認識などの実験を通じて,提案した正規化がトレーニング時間を大幅に短縮し,ベースラインモデルよりも性能を向上できることを示す。
論文 参考訳(メタデータ) (2020-06-18T17:44:50Z) - Single-step deep reinforcement learning for open-loop control of laminar
and turbulent flows [0.0]
本研究は,流体力学系の最適化と制御を支援するための深部強化学習(DRL)技術の能力を評価する。
原型ポリシー最適化(PPO)アルゴリズムの新たな"退化"バージョンを組み合わせることで、学習エピソード当たり1回だけシステムを最適化するニューラルネットワークをトレーニングする。
論文 参考訳(メタデータ) (2020-06-04T16:11:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。