論文の概要: Machine learning Hubbard parameters with equivariant neural networks
- arxiv url: http://arxiv.org/abs/2406.02457v1
- Date: Tue, 4 Jun 2024 16:21:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 15:20:58.488672
- Title: Machine learning Hubbard parameters with equivariant neural networks
- Title(参考訳): 同変ニューラルネットワークを用いた機械学習ハバードパラメータ
- Authors: Martin Uhrin, Austin Zadoks, Luca Binci, Nicola Marzari, Iurii Timrov,
- Abstract要約: 等変ニューラルネットワークに基づく機械学習モデルを提案する。
ここでは,繰り返し線形応答計算を用いて自己整合的に計算したハバードパラメータの予測を行う。
本モデルでは,Hubbard $U$および$V$パラメータの平均絶対相対誤差を平均3%,5%とする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Density-functional theory with extended Hubbard functionals (DFT+$U$+$V$) provides a robust framework to accurately describe complex materials containing transition-metal or rare-earth elements. It does so by mitigating self-interaction errors inherent to semi-local functionals which are particularly pronounced in systems with partially-filled $d$ and $f$ electronic states. However, achieving accuracy in this approach hinges upon the accurate determination of the on-site $U$ and inter-site $V$ Hubbard parameters. In practice, these are obtained either by semi-empirical tuning, requiring prior knowledge, or, more correctly, by using predictive but expensive first-principles calculations. Here, we present a machine learning model based on equivariant neural networks which uses atomic occupation matrices as descriptors, directly capturing the electronic structure, local chemical environment, and oxidation states of the system at hand. We target here the prediction of Hubbard parameters computed self-consistently with iterative linear-response calculations, as implemented in density-functional perturbation theory (DFPT), and structural relaxations. Remarkably, when trained on data from 11 materials spanning various crystal structures and compositions, our model achieves mean absolute relative errors of 3% and 5% for Hubbard $U$ and $V$ parameters, respectively. By circumventing computationally expensive DFT or DFPT self-consistent protocols, our model significantly expedites the prediction of Hubbard parameters with negligible computational overhead, while approaching the accuracy of DFPT. Moreover, owing to its robust transferability, the model facilitates accelerated materials discovery and design via high-throughput calculations, with relevance for various technological applications.
- Abstract(参考訳): 拡張ハバード汎関数 (DFT+$U$+$V$) を持つ密度汎関数理論は、遷移金属または希土類元素を含む複雑な物質を正確に記述するための堅牢な枠組みを提供する。
これは半局所函数に固有の自己相互作用誤差を緩和し、部分的に満たされた$d$と$f$電子状態を持つ系では特に顕著である。
しかし、このアプローチにおける精度の達成は、オンサイト$U$とインターサイト$V$Hubbardパラメータの正確な決定に依存している。
実際には、これらは半経験的なチューニングによって得られ、事前の知識を必要とするか、より正確には予測的だが高価な第一原理計算を用いて得られる。
本稿では,原子の占有行列を記述子として利用し,電子構造,局所化学環境,酸化状態を直接把握する同変ニューラルネットワークに基づく機械学習モデルを提案する。
ここでは,密度汎関数摂動理論(DFPT)や構造緩和のように,繰り返し線形応答計算と自己整合的に計算されたハバードパラメータの予測を行う。
注目すべきは、様々な結晶構造と組成にまたがる11の材料からのデータに基づいてトレーニングすると、Hubbard $U$および$V$パラメータの平均絶対相対誤差が3%および5%に達することである。
計算コストの高い DFT や DFPT の自己整合性プロトコルを回避することにより,DFPT の精度を向上しつつ,計算オーバーヘッドが無視できる Hubbard パラメータの予測を著しく高速化する。
さらに, その堅牢な伝達性から, 高スループット計算による材料発見と設計の高速化が促進され, 様々な技術応用への応用が期待できる。
関連論文リスト
- MaD-Scientist: AI-based Scientist solving Convection-Diffusion-Reaction Equations Using Massive PINN-Based Prior Data [22.262191225577244]
科学的基礎モデル(SFM)にも同様のアプローチが適用できるかどうかを考察する。
数学辞書の任意の線形結合によって構築された偏微分方程式(PDE)の解の形で、低コストな物理情報ニューラルネットワーク(PINN)に基づく近似された事前データを収集する。
本研究では,1次元対流拡散反応方程式に関する実験的な証拠を提供する。
論文 参考訳(メタデータ) (2024-10-09T00:52:00Z) - Neural Pfaffians: Solving Many Many-Electron Schrödinger Equations [58.130170155147205]
神経波関数は、計算コストが高いにもかかわらず、多電子系の基底状態の近似において前例のない精度を達成した。
近年の研究では、個々の問題を個別に解くのではなく、様々な構造や化合物にまたがる一般化波動関数を学習することでコストを下げることが提案されている。
この研究は、分子間の一般化に適した過度にパラメータ化され、完全に学習可能なニューラルウェーブ関数を定義することで、この問題に取り組む。
論文 参考訳(メタデータ) (2024-05-23T16:30:51Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
この研究は、有限なサポートを持つ一般パラメトリックカーネルを用いた時間点プロセス推論の効率的な解を提供する。
脳磁図(MEG)により記録された脳信号からの刺激誘発パターンの発生をモデル化し,その有効性を評価する。
その結果,提案手法により,最先端技術よりもパターン遅延の推定精度が向上することが示唆された。
論文 参考訳(メタデータ) (2022-10-10T12:35:02Z) - Neural network enhanced measurement efficiency for molecular
groundstates [63.36515347329037]
いくつかの分子量子ハミルトニアンの複雑な基底状態波動関数を学習するために、一般的なニューラルネットワークモデルを適用する。
ニューラルネットワークモデルを使用することで、単一コピー計測結果だけで観測対象を再構築するよりも堅牢な改善が得られます。
論文 参考訳(メタデータ) (2022-06-30T17:45:05Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - Physics-enhanced deep surrogates for partial differential equations [30.731686639510517]
本稿では, 複雑な物理系のための高速サロゲートモデル開発に向けて, 物理強化ディープサロゲート(PEDS)アプローチを提案する。
具体的には,低忠実で説明可能な物理シミュレータとニューラルネットワークジェネレータの組み合わせを提案する。
論文 参考訳(メタデータ) (2021-11-10T18:43:18Z) - SE(3)-equivariant prediction of molecular wavefunctions and electronic
densities [4.2572103161049055]
本稿では,幾何点クラウドデータのためのディープラーニングアーキテクチャを構築するための汎用SE(3)-同変演算とビルディングブロックを紹介する。
本モデルでは,従来の最先端モデルと比較して,予測誤差を最大2桁まで低減する。
低精度参照波動関数で訓練されたモデルが電子的多体相互作用の正当性を暗黙的に学習するトランスファーラーニングアプリケーションにおいて、我々のアプローチの可能性を実証する。
論文 参考訳(メタデータ) (2021-06-04T08:57:46Z) - Local approximate Gaussian process regression for data-driven
constitutive laws: Development and comparison with neural networks [0.0]
局所近似過程回帰を用いて特定のひずみ空間における応力出力を予測する方法を示す。
FE設定におけるグローバル構造問題を解決する場合のlaGPR近似の局所的性質に適応するために、修正されたニュートン・ラフソン手法が提案される。
論文 参考訳(メタデータ) (2021-05-07T14:49:28Z) - OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted
Atomic-Orbital Features [42.96944345045462]
textscOrbNetは、学習効率と転送可能性の観点から、既存のメソッドよりも優れています。
薬物のような分子のデータセットに応用するために、textscOrbNetは1000倍以上の計算コストでDFTの化学的精度でエネルギーを予測する。
論文 参考訳(メタデータ) (2020-07-15T22:38:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。