Unveiling the Potential of AI for Nanomaterial Morphology Prediction
- URL: http://arxiv.org/abs/2406.02591v1
- Date: Fri, 31 May 2024 19:16:07 GMT
- Title: Unveiling the Potential of AI for Nanomaterial Morphology Prediction
- Authors: Ivan Dubrovsky, Andrei Dmitrenko, Aleksei Dmitrenko, Nikita Serov, Vladimir Vinogradov,
- Abstract summary: This study explores the potential of AI to predict the morphology of nanoparticles within the data availability constraints.
We first generated a new multi-modal dataset that is double the size of analogous studies.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Creation of nanomaterials with specific morphology remains a complex experimental process, even though there is a growing demand for these materials in various industry sectors. This study explores the potential of AI to predict the morphology of nanoparticles within the data availability constraints. For that, we first generated a new multi-modal dataset that is double the size of analogous studies. Then, we systematically evaluated performance of classical machine learning and large language models in prediction of nanomaterial shapes and sizes. Finally, we prototyped a text-to-image system, discussed the obtained empirical results, as well as the limitations and promises of existing approaches.
Related papers
- Improving Molecular Modeling with Geometric GNNs: an Empirical Study [56.52346265722167]
This paper focuses on the impact of different canonicalization methods, (2) graph creation strategies, and (3) auxiliary tasks, on performance, scalability and symmetry enforcement.
Our findings and insights aim to guide researchers in selecting optimal modeling components for molecular modeling tasks.
arXiv Detail & Related papers (2024-07-11T09:04:12Z) - Discovering intrinsic multi-compartment pharmacometric models using Physics Informed Neural Networks [0.0]
We introduce PKINNs, a novel purely data-driven neural network model.
PKINNs efficiently discovers and models intrinsic multi-compartment-based pharmacometric structures.
The resulting models are both interpretable and explainable through Symbolic Regression methods.
arXiv Detail & Related papers (2024-04-30T19:31:31Z) - A Physics-Guided Neural Operator Learning Approach to Model Biological
Tissues from Digital Image Correlation Measurements [3.65211252467094]
We present a data-driven correlation to biological tissue modeling, which aims to predict the displacement field based on digital image correlation (DIC) measurements under unseen loading scenarios.
A material database is constructed from the DIC displacement tracking measurements of multiple biaxial stretching protocols on a porcine tricuspid valve leaflet.
The material response is modeled as a solution operator from the loading to the resultant displacement field, with the material properties learned implicitly from the data and naturally embedded in the network parameters.
arXiv Detail & Related papers (2022-04-01T04:56:41Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Functional Nanomaterials Design in the Workflow of Building
Machine-Learning Models [0.0]
Machine-learning (ML) techniques have revolutionized a host of research fields of chemical and materials science.
ML provides a more comprehensive insight into combinations with molecules/materials.
The key to the advances in nanomaterials discovery is how input fingerprints and output values can be linked quantitatively.
arXiv Detail & Related papers (2021-08-16T05:51:03Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
In modern data science, it is more interesting to understand the properties of the model, which parts could be replaced to obtain better results.
We use multi-objective evolutionary optimization for composite data-driven model learning to obtain the algorithm's desired properties.
arXiv Detail & Related papers (2021-07-07T11:17:09Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z) - Reverse Engineering Configurations of Neural Text Generation Models [86.9479386959155]
The study of artifacts that emerge in machine generated text as a result of modeling choices is a nascent research area.
We conduct an extensive suite of diagnostic tests to observe whether modeling choices leave detectable artifacts in the text they generate.
Our key finding, which is backed by a rigorous set of experiments, is that such artifacts are present and that different modeling choices can be inferred by observing the generated text alone.
arXiv Detail & Related papers (2020-04-13T21:02:44Z) - Intelligent multiscale simulation based on process-guided composite
database [0.0]
We present an integrated data-driven modeling framework based on process modeling, material homogenization, and machine learning.
We are interested in the injection-molded short fiber reinforced composites, which have been identified as key material systems in automotive, aerospace, and electronics industries.
arXiv Detail & Related papers (2020-03-20T20:39:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.