Frequency Enhanced Pre-training for Cross-city Few-shot Traffic Forecasting
- URL: http://arxiv.org/abs/2406.02614v2
- Date: Thu, 6 Jun 2024 01:38:45 GMT
- Title: Frequency Enhanced Pre-training for Cross-city Few-shot Traffic Forecasting
- Authors: Zhanyu Liu, Jianrong Ding, Guanjie Zheng,
- Abstract summary: The concept of cross-city few-shot forecasting has emerged as a viable approach.
FEPCross has a pre-training stage and a fine-tuning stage.
Empirical evaluations performed on real-world traffic datasets validate the exceptional efficacy of FEPCross.
- Score: 7.4525875528900665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The field of Intelligent Transportation Systems (ITS) relies on accurate traffic forecasting to enable various downstream applications. However, developing cities often face challenges in collecting sufficient training traffic data due to limited resources and outdated infrastructure. Recognizing this obstacle, the concept of cross-city few-shot forecasting has emerged as a viable approach. While previous cross-city few-shot forecasting methods ignore the frequency similarity between cities, we have made an observation that the traffic data is more similar in the frequency domain between cities. Based on this fact, we propose a \textbf{F}requency \textbf{E}nhanced \textbf{P}re-training Framework for \textbf{Cross}-city Few-shot Forecasting (\textbf{FEPCross}). FEPCross has a pre-training stage and a fine-tuning stage. In the pre-training stage, we propose a novel Cross-Domain Spatial-Temporal Encoder that incorporates the information of the time and frequency domain and trains it with self-supervised tasks encompassing reconstruction and contrastive objectives. In the fine-tuning stage, we design modules to enrich training samples and maintain a momentum-updated graph structure, thereby mitigating the risk of overfitting to the few-shot training data. Empirical evaluations performed on real-world traffic datasets validate the exceptional efficacy of FEPCross, outperforming existing approaches of diverse categories and demonstrating characteristics that foster the progress of cross-city few-shot forecasting.
Related papers
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - FlashST: A Simple and Universal Prompt-Tuning Framework for Traffic Prediction [22.265095967530296]
FlashST is a framework that adapts pre-trained models to generalize specific characteristics of diverse datasets.
It captures a shift of pre-training and downstream data, facilitating effective adaptation to diverse scenarios.
Empirical evaluations demonstrate the effectiveness of FlashST across different scenarios.
arXiv Detail & Related papers (2024-05-28T07:18:52Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Spatio-Temporal Graph Neural Point Process for Traffic Congestion Event
Prediction [16.530361912832763]
We propose a temporal graph neural point process framework, named STNPP, for traffic congestion event prediction.
Our method achieves superior performance in comparison to existing state-of-the-art approaches.
arXiv Detail & Related papers (2023-11-15T01:22:47Z) - Test-Time Compensated Representation Learning for Extreme Traffic
Forecasting [13.859278899032846]
congestion and rush hours can result in low correlation in vehicle speeds at various intersections during adjacent time periods.
Existing methods generally predict future series based on recent and entirely decomposed training data during the testing phase.
We propose a test-time representation learning framework comprising a multi-head spatial spatial transformer model.
arXiv Detail & Related papers (2023-09-16T18:46:34Z) - Uncertainty Quantification for Image-based Traffic Prediction across
Cities [63.136794104678025]
Uncertainty quantification (UQ) methods provide an approach to induce probabilistic reasoning.
We investigate their application to a large-scale image-based traffic dataset spanning multiple cities.
We find that our approach can capture both temporal and spatial effects on traffic behaviour in a representative case study for the city of Moscow.
arXiv Detail & Related papers (2023-08-11T13:35:52Z) - Spatio-Temporal Graph Few-Shot Learning with Cross-City Knowledge
Transfer [58.6106391721944]
Cross-city knowledge has shown its promise, where the model learned from data-sufficient cities is leveraged to benefit the learning process of data-scarce cities.
We propose a model-agnostic few-shot learning framework for S-temporal graph called ST-GFSL.
We conduct comprehensive experiments on four traffic speed prediction benchmarks and the results demonstrate the effectiveness of ST-GFSL compared with state-of-the-art methods.
arXiv Detail & Related papers (2022-05-27T12:46:52Z) - A Spatial-Temporal Attention Multi-Graph Convolution Network for
Ride-Hailing Demand Prediction Based on Periodicity with Offset [9.897431292540393]
Ride-hailing service is becoming a leading part in urban transportation.
To improve the efficiency of ride-hailing service, accurate prediction of transportation demand is a fundamental challenge.
In this paper, we tackle this problem from both aspects of network structure and data-set formulation.
arXiv Detail & Related papers (2022-03-23T16:03:55Z) - Traffic Flow Forecasting with Maintenance Downtime via Multi-Channel
Attention-Based Spatio-Temporal Graph Convolutional Networks [4.318655493189584]
We propose a model to predict traffic speed under the impact of construction work.
The model is based on the powerful attention-based,temporal graph convolution architecture but utilizes various channels to integrate different sources of information.
The model is evaluated on two benchmark datasets and a novel dataset we have collected over the bustling roadway's corner in Northern Virginia.
arXiv Detail & Related papers (2021-10-04T16:07:37Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z) - Prediction of Traffic Flow via Connected Vehicles [77.11902188162458]
We propose a Short-term Traffic flow Prediction framework so that transportation authorities take early actions to control flow and prevent congestion.
We anticipate flow at future time frames on a target road segment based on historical flow data and innovative features such as real time feeds and trajectory data provided by Connected Vehicles (CV) technology.
We show how this novel approach allows advanced modelling by integrating into the forecasting of flow, the impact of various events that CV realistically encountered on segments along their trajectory.
arXiv Detail & Related papers (2020-07-10T16:00:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.