論文の概要: Adaptive Layer Splitting for Wireless LLM Inference in Edge Computing: A Model-Based Reinforcement Learning Approach
- arxiv url: http://arxiv.org/abs/2406.02616v2
- Date: Thu, 6 Jun 2024 09:07:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 19:44:18.501153
- Title: Adaptive Layer Splitting for Wireless LLM Inference in Edge Computing: A Model-Based Reinforcement Learning Approach
- Title(参考訳): エッジコンピューティングにおける無線LLM推論のための適応層分割:モデルに基づく強化学習アプローチ
- Authors: Yuxuan Chen, Rongpeng Li, Xiaoxue Yu, Zhifeng Zhao, Honggang Zhang,
- Abstract要約: 本研究では、モデルベース強化学習(MBRL)からインスピレーションを得て、エッジとユーザ機器(UE)間の最適分割点を決定するフレームワークを提案する。
報酬代理モデルを導入することで、頻繁な性能評価の計算コストを大幅に削減できる。
- 参考スコア(独自算出の注目度): 18.153641696306707
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimizing the deployment of large language models (LLMs) in edge computing environments is critical for enhancing privacy and computational efficiency. Toward efficient wireless LLM inference in edge computing, this study comprehensively analyzes the impact of different splitting points in mainstream open-source LLMs. On this basis, this study introduces a framework taking inspiration from model-based reinforcement learning (MBRL) to determine the optimal splitting point across the edge and user equipment (UE). By incorporating a reward surrogate model, our approach significantly reduces the computational cost of frequent performance evaluations. Extensive simulations demonstrate that this method effectively balances inference performance and computational load under varying network conditions, providing a robust solution for LLM deployment in decentralized settings.
- Abstract(参考訳): エッジコンピューティング環境における大規模言語モデル(LLM)のデプロイの最適化は、プライバシと計算効率の向上に不可欠である。
本研究は,エッジコンピューティングにおける効率的な無線LLM推論に向けて,主要なオープンソースLLMにおける分割点の影響を包括的に分析する。
そこで本研究では,モデルベース強化学習(MBRL)からインスピレーションを得て,エッジとユーザ機器(UE)間の最適分割点を決定するフレームワークを提案する。
報酬代理モデルを導入することで、頻繁な性能評価の計算コストを大幅に削減できる。
大規模シミュレーションにより, この手法は, 異なるネットワーク条件下での推論性能と計算負荷のバランスを効果的に保ち, 分散環境におけるLLM配置の堅牢なソリューションを提供することを示した。
関連論文リスト
- Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
第6世代(6G)ネットワークは、従来のRISの限界を克服するために、再構成可能なインテリジェントサーフェス(STAR-RIS)を同時に送信および反射する。
STAR-RISを屋内に展開することは、干渉緩和、電力消費、リアルタイム設定における課題を示す。
屋内通信に複数のアクセスポイント(AP)とSTAR-RISを利用する新しいネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-06-19T07:17:04Z) - Convergence Rate Maximization for Split Learning-based Control of EMG Prosthetic Devices [2.432653781859026]
Split Learning (SL) は筋電図に基づく補綴制御における有望な分散学習手法である。
本稿では,モデル収束率の最大化の観点から,最適カット層選択のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-06T15:05:49Z) - Self-Supervised Learning for Large-Scale Preventive Security Constrained DC Optimal Power Flow [20.078717680640214]
SCOPF(Security-Constrained Optimal Power Flow)は、電力グリッドの安定性において重要な役割を果たすが、システムが成長するにつれてますます複雑になる。
本稿では,大規模SCOPF問題に対する準最適解を生成するための,自己教師付きエンドツーエンドのPDL-SCOPFについて紹介する。
論文 参考訳(メタデータ) (2023-11-29T20:36:35Z) - Amortizing intractable inference in large language models [56.92471123778389]
難治性後部分布のサンプルとして, 償却ベイズ推定を用いる。
我々は,LLMファインチューニングの分散マッチングパラダイムが,最大習熟の代替となることを実証的に実証した。
重要な応用として、チェーン・オブ・ソート推論を潜在変数モデリング問題として解釈する。
論文 参考訳(メタデータ) (2023-10-06T16:36:08Z) - Controlling Continuous Relaxation for Combinatorial Optimization [0.0]
未学習学習(UL)に基づく最適化(CO)のための解法は、CO目標を直接最適化することで、出力がソフトソリューションを提供するニューラルネットワークを訓練する。
これらの解法は、特に大規模なCO問題に対して、従来の手法や他の学習ベースの手法よりもいくつかの利点を提供している。
論文 参考訳(メタデータ) (2023-09-29T04:23:58Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - The Virtues of Laziness in Model-based RL: A Unified Objective and
Algorithms [37.025378882978714]
モデルベース強化学習(MBRL)における2つの基本的な課題に対処する新しいアプローチを提案する。
我々の「怠慢」な手法は、学習された方針と専門家の政策の間のパフォーマンスの違いを捉えるために、モデルにおけるアドバンテージによるパフォーマンスの差異という、新しい統合された目的を生かしている。
提案する目的を最適化する2つの非回帰アルゴリズムを提案し,その統計的および計算的ゲインを実証する。
論文 参考訳(メタデータ) (2023-03-01T17:42:26Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
無線ネットワークにおけるハイブリッド・フェデレーション・スプリット・ラーニング・フレームワークを提案する。
ラベル共有のないモデル分割のための並列計算方式を設計し,提案方式が収束速度に与える影響を理論的に解析する。
論文 参考訳(メタデータ) (2022-09-02T10:29:56Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
本稿では,エッジ支援型民主化学習機構であるEdge-DemLearnの階層的学習構造を示す。
また、Edge-DemLearnを柔軟なモデルトレーニングメカニズムとして検証し、リージョンに分散制御と集約の方法論を構築する。
論文 参考訳(メタデータ) (2020-12-01T11:46:03Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。