論文の概要: Submodular Framework for Structured-Sparse Optimal Transport
- arxiv url: http://arxiv.org/abs/2406.04914v1
- Date: Fri, 7 Jun 2024 13:11:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 14:01:29.401780
- Title: Submodular Framework for Structured-Sparse Optimal Transport
- Title(参考訳): 構造スパース最適輸送のためのサブモジュール構造
- Authors: Piyushi Manupriya, Pratik Jawanpuria, Karthik S. Gurumoorthy, SakethaNath Jagarlapudi, Bamdev Mishra,
- Abstract要約: 非平衡最適輸送(UOT)は、非正規化対策の柔軟な枠組みとロバスト性により、近年注目を集めている。
本研究では,UOT設定における疎輸送計画の学習(構造化)について検討する。
本稿では,最近検討された平均誤差に基づく UOT を用いた新しい空間制約付き UOT の定式化を提案する。
- 参考スコア(独自算出の注目度): 7.030105924295838
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unbalanced optimal transport (UOT) has recently gained much attention due to its flexible framework for handling un-normalized measures and its robustness properties. In this work, we explore learning (structured) sparse transport plans in the UOT setting, i.e., transport plans have an upper bound on the number of non-sparse entries in each column (structured sparse pattern) or in the whole plan (general sparse pattern). We propose novel sparsity-constrained UOT formulations building on the recently explored maximum mean discrepancy based UOT. We show that the proposed optimization problem is equivalent to the maximization of a weakly submodular function over a uniform matroid or a partition matroid. We develop efficient gradient-based discrete greedy algorithms and provide the corresponding theoretical guarantees. Empirically, we observe that our proposed greedy algorithms select a diverse support set and we illustrate the efficacy of the proposed approach in various applications.
- Abstract(参考訳): 不均衡最適輸送(UOT)は、非正規化測度とロバスト性を扱うフレキシブルな枠組みにより、最近注目を集めている。
本研究では,UOT設定における学習(構造化)スパース輸送計画,すなわち輸送計画において,各列内の非スパースエントリ数(構造化スパースパターン)や全体計画(一般スパースパターン)に上限を持つことを検討する。
提案手法は,最近検討された最大平均誤差に基づく UOT を用いた新しい空間制約付き UOT の定式化である。
提案した最適化問題は,一様マトロイドあるいは分割マトロイド上での弱部分モジュラ関数の最大化と等価であることを示す。
我々は,効率的な勾配に基づく離散グリーディアルゴリズムを開発し,それに対応する理論的保証を提供する。
実験により,提案アルゴリズムは多様なサポートセットを選択し,提案手法の有効性を示す。
関連論文リスト
- Alternating Minimization Schemes for Computing Rate-Distortion-Perception Functions with $f$-Divergence Perception Constraints [10.564071872770146]
離散メモリレスソースに対するRDPF(Ralse-Distortion-Perception Function)の計算について検討した。
最適パラメトリック解を特徴付ける。
歪みと知覚制約について十分な条件を提供する。
論文 参考訳(メタデータ) (2024-08-27T12:50:12Z) - Floorplanning of VLSI by Mixed-Variable Optimization [42.82770651937298]
本稿では,混合変数のフロアプランニング問題を解くためのメメティックアルゴリズムを提案する。
提案アルゴリズムは、著名なB*木に基づくフロアプランニングアルゴリズムよりも優れている。
論文 参考訳(メタデータ) (2024-01-27T06:34:16Z) - Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - Distributed Learning and Democratic Embeddings: Polynomial-Time Source
Coding Schemes Can Achieve Minimax Lower Bounds for Distributed Gradient
Descent under Communication Constraints [46.17631511884969]
我々は、n次元ユークリッド空間においてベクトルを圧縮する問題を考える。
数値化器の被覆効率が次元独立であるか、あるいは非常に弱い対数依存であるという意味では、民主主義的および民主的に近いソースコーディングスキームが(ほぼ)最適であることを示す。
分散最適化アルゴリズムDGD-DEFを提案する。このアルゴリズムは,提案した符号化戦略を用いて,(ほぼ)定数要素内における最小収束率を実現する。
論文 参考訳(メタデータ) (2021-03-13T00:04:11Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
本稿では,GDC(Generative, Discriminative, and Corrective)の原則を集約する,最適化に着想を得た統合学習フレームワークを提案する。
フレキシブルな組み合わせで最適化モデルを効果的に解くために,3つのプロパゲーティブモジュールを構築した。
低レベル視覚タスクにおける実験は、GDCの有効性と適応性を検証する。
論文 参考訳(メタデータ) (2020-12-10T03:24:53Z) - Planning with Submodular Objective Functions [118.0376288522372]
準モジュラー目的関数を用いて計画を行い、累積報酬を最大化する代わりに、劣モジュラー関数によって誘導される値の最大化を目標とする。
本フレームワークは, 基本性制約を特別な場合として, 標準計画と準モジュラー目標を仮定する。
論文 参考訳(メタデータ) (2020-10-22T16:55:12Z) - Efficient Robust Optimal Transport with Application to Multi-Label
Classification [12.521494095948068]
OTコスト関数における対称正の半定値マハラノビス計量を用いて特徴-特徴関係をモデル化する。
結果の最適化問題を非線形OT問題とみなし,Frank-Wolfeアルゴリズムを用いて解く。
タグ予測や多クラス分類などの識別学習環境における実証的な結果から,本手法の有効性が示唆された。
論文 参考訳(メタデータ) (2020-10-22T16:43:52Z) - Jump Operator Planning: Goal-Conditioned Policy Ensembles and Zero-Shot
Transfer [71.44215606325005]
本稿では,シーケンシャルなサブゴールタスクの超指数空間における解を高速に計算するための,Jump-Operator Dynamic Programmingという新しいフレームワークを提案する。
このアプローチでは、時間的に拡張された行動として機能する、再利用可能な目標条件付き警察のアンサンブルを制御する。
すると、この部分空間上の目的関数のクラスを、解がグラウンド化に不変であるものとして特定し、最適ゼロショット移動をもたらす。
論文 参考訳(メタデータ) (2020-07-06T05:13:20Z) - Distributionally Robust Bayesian Optimization [121.71766171427433]
そこで本研究では,ゼロ次雑音最適化のための分散ロバストなベイズ最適化アルゴリズム(DRBO)を提案する。
提案アルゴリズムは, 種々の設定において, 線形に頑健な後悔を確実に得る。
提案手法は, 実世界のベンチマークと実世界のベンチマークの両方において, 頑健な性能を示す。
論文 参考訳(メタデータ) (2020-02-20T22:04:30Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
適応性は現代最適化理論において重要であるが、研究されていない性質である。
提案アルゴリズムは,PL目標に対して既存のアルゴリズムよりも優れた性能を保ちながら,PL目標に対して最適な収束性を実現することを実証した。
論文 参考訳(メタデータ) (2020-02-13T05:42:27Z) - Recovery Bounds on Class-Based Optimal Transport: A Sum-of-Norms
Regularization Framework [21.037720934987483]
本稿では,和ノルム正規化項を持つ凸OTプログラムを提案し,幾何学的仮定の下で基礎となるクラス構造を確実に復元する。
我々は,強い凸性がない場合でも,最適点の特異性について新たな議論を行う。
実験の結果,新しい正則化器はデータ中のクラス構造をよりよく保存するだけでなく,データ形状にさらなるロバスト性をもたらすことがわかった。
論文 参考訳(メタデータ) (2019-03-09T18:54:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。