論文の概要: Recovery Bounds on Class-Based Optimal Transport: A Sum-of-Norms
Regularization Framework
- arxiv url: http://arxiv.org/abs/1903.03850v3
- Date: Mon, 22 May 2023 16:00:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-24 09:03:31.239182
- Title: Recovery Bounds on Class-Based Optimal Transport: A Sum-of-Norms
Regularization Framework
- Title(参考訳): クラスベース最適輸送におけるリカバリバウンド--Sum-of-Norms正規化フレームワーク
- Authors: Arman Rahbar, Ashkan Panahi, Morteza Haghir Chehreghani, Devdatt
Dubhashi, Hamid Krim
- Abstract要約: 本稿では,和ノルム正規化項を持つ凸OTプログラムを提案し,幾何学的仮定の下で基礎となるクラス構造を確実に復元する。
我々は,強い凸性がない場合でも,最適点の特異性について新たな議論を行う。
実験の結果,新しい正則化器はデータ中のクラス構造をよりよく保存するだけでなく,データ形状にさらなるロバスト性をもたらすことがわかった。
- 参考スコア(独自算出の注目度): 21.037720934987483
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a novel theoretical framework for understating OT schemes
respecting a class structure. For this purpose, we propose a convex OT program
with a sum-of-norms regularization term, which provably recovers the underlying
class structure under geometric assumptions. Furthermore, we derive an
accelerated proximal algorithm with a closed-form projection and proximal
operator scheme, thereby affording a more scalable algorithm for computing
optimal transport plans. We provide a novel argument for the uniqueness of the
optimum even in the absence of strong convexity. Our experiments show that the
new regularizer not only results in a better preservation of the class
structure in the data but also yields additional robustness to the data
geometry, compared to previous regularizers.
- Abstract(参考訳): 我々は、クラス構造を尊重するOTスキームの基盤となる新しい理論的枠組みを開発する。
この目的のために,和ノルム正規化項を持つ凸OTプログラムを提案し,幾何学的仮定の下で基礎となるクラス構造を確実に復元する。
さらに,閉形式射影および近位作用素スキームを用いた高速化近位アルゴリズムを導出し,最適な輸送計画を計算するためのよりスケーラブルなアルゴリズムを実現する。
我々は,強い凸性がない場合でも,最適点の特異性について新たな議論を行う。
実験により,新しい正規化器はデータ中のクラス構造の保存性が向上するだけでなく,従来の正規化器と比較してデータ幾何に強固性が増すことを示した。
関連論文リスト
- e-COP : Episodic Constrained Optimization of Policies [12.854752753529151]
本稿では,制約付き強化学習(RL)のための第1ポリシー最適化アルゴリズムを提案する。
提案アルゴリズムは, エピソード設定に適応したSoTA (non-episodic) アルゴリズムと類似あるいは良好な性能を示す。
論文 参考訳(メタデータ) (2024-06-13T20:12:09Z) - Submodular Framework for Structured-Sparse Optimal Transport [7.030105924295838]
非平衡最適輸送(UOT)は、非正規化対策の柔軟な枠組みとロバスト性により、近年注目を集めている。
本研究では,UOT設定における疎輸送計画の学習(構造化)について検討する。
本稿では,最近検討された平均誤差に基づく UOT を用いた新しい空間制約付き UOT の定式化を提案する。
論文 参考訳(メタデータ) (2024-06-07T13:11:04Z) - ENOT: Expectile Regularization for Fast and Accurate Training of Neural Optimal Transport [3.0237149871998095]
最適な輸送計画の正確かつ効率的に推定する新しい手法を提案する。
expectile Regularized Neural Transport Optimal (ENOT) と呼ばれる。
ENOTは二重ポテンシャルの学習過程に結合条件を強制する。
論文 参考訳(メタデータ) (2024-03-06T15:15:42Z) - Generative Models for Anomaly Detection and Design-Space Dimensionality
Reduction in Shape Optimization [0.0]
本研究は,グローバルアルゴリズムの効率向上と高品質な設計の促進を目的として,新たな形状最適化手法を提案する。
これは、幾何学的分散を最大化する新しい縮小部分空間を定義する元の設計変数の数を減らすことで達成される。
計算結果から,グローバル最適化アルゴリズムの収束性を改善するとともに,高品質な幾何学的特徴を持つ設計のみを生成する。
論文 参考訳(メタデータ) (2023-08-08T04:57:58Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
本稿では,完全合成最適化問題を凸コンパクト集合で解くための一階アルゴリズムについて検討する。
微分可能および非微分可能を別々に扱い、滑らかな部分のみを線形化することで目的の構造を利用する。
論文 参考訳(メタデータ) (2023-02-24T18:41:48Z) - Adapting to Misspecification in Contextual Bandits [82.55565343668246]
我々は、$varepsilon$-misspecified contextual banditsに対して、新しいオラクル効率アルゴリズム群を導入する。
我々は、未知の不特定値に対して最適な$O(dsqrtT + varepsilonsqrtdT)$ regret boundを達成する最初のアルゴリズムを得る。
論文 参考訳(メタデータ) (2021-07-12T21:30:41Z) - Efficient Methods for Structured Nonconvex-Nonconcave Min-Max
Optimization [98.0595480384208]
定常点に収束する一般化外空間を提案する。
このアルゴリズムは一般の$p$ノルド空間だけでなく、一般の$p$次元ベクトル空間にも適用される。
論文 参考訳(メタデータ) (2020-10-31T21:35:42Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
複数の次元に沿った最先端技術を改善する新しいアルゴリズムを提案する。
非文脈線形帯域の特別な場合において、学習地平線に対して最小限の最適性を確立する。
論文 参考訳(メタデータ) (2020-10-23T09:12:47Z) - Structure Adaptive Algorithms for Stochastic Bandits [22.871155520200773]
構造化多武装バンディット問題のクラスにおける報酬最大化について検討する。
平均的な武器の報酬は、与えられた構造的制約を満たす。
我々は、反復的なサドルポイントソルバを用いて、インスタンス依存の低バウンドからのアルゴリズムを開発する。
論文 参考訳(メタデータ) (2020-07-02T08:59:54Z) - A General Framework for Consistent Structured Prediction with Implicit
Loss Embeddings [113.15416137912399]
構造化予測のための理論的・アルゴリズム的な枠組みを提案し,解析する。
問題に対して適切な幾何を暗黙的に定義する、損失関数の大規模なクラスについて検討する。
出力空間を無限の濃度で扱うとき、推定子の適切な暗黙の定式化が重要であることが示される。
論文 参考訳(メタデータ) (2020-02-13T10:30:04Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
適応性は現代最適化理論において重要であるが、研究されていない性質である。
提案アルゴリズムは,PL目標に対して既存のアルゴリズムよりも優れた性能を保ちながら,PL目標に対して最適な収束性を実現することを実証した。
論文 参考訳(メタデータ) (2020-02-13T05:42:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。