論文の概要: Transformer Conformal Prediction for Time Series
- arxiv url: http://arxiv.org/abs/2406.05332v1
- Date: Sat, 8 Jun 2024 03:17:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 20:24:20.061693
- Title: Transformer Conformal Prediction for Time Series
- Title(参考訳): 時系列の変圧器等角予測
- Authors: Junghwan Lee, Chen Xu, Yao Xie,
- Abstract要約: 本稿では,Transformerアーキテクチャを用いた時系列の共形予測手法を提案する。
我々はTransformerデコーダを条件付き量子化推定器として使用し、予測残差の量子化を予測する。
- 参考スコア(独自算出の注目度): 9.900139803164372
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present a conformal prediction method for time series using the Transformer architecture to capture long-memory and long-range dependencies. Specifically, we use the Transformer decoder as a conditional quantile estimator to predict the quantiles of prediction residuals, which are used to estimate the prediction interval. We hypothesize that the Transformer decoder benefits the estimation of the prediction interval by learning temporal dependencies across past prediction residuals. Our comprehensive experiments using simulated and real data empirically demonstrate the superiority of the proposed method compared to the existing state-of-the-art conformal prediction methods.
- Abstract(参考訳): 本稿では,Transformerアーキテクチャを用いた時系列の共形予測手法を提案する。
具体的には、トランスフォーマーデコーダを条件付き量子化推定器として、予測残差の量子化を予測し、予測間隔を推定する。
我々は,トランスフォーマーデコーダが過去の予測残差の時間依存性を学習することで,予測区間の推定に有効であると仮定する。
シミュレーションおよび実データを用いた包括的実験により,提案手法の既存手法と比較して,提案手法の優位性を実証的に実証した。
関連論文リスト
- Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
我々は時系列の統一予測のための生成変換器Timer-XLを提案する。
Timer-XLは、統一されたアプローチにより、挑戦的な予測ベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-10-07T07:27:39Z) - Stock Volume Forecasting with Advanced Information by Conditional Variational Auto-Encoder [49.97673761305336]
本研究では,短時間・長期の予測作業において,日当たりのストックボリューム時系列の予測を改善するために,条件変動(CVAE)を用いることを実証する。
CVAEは非線形時系列をサンプル外予測として生成し、精度が向上し、実際のデータとの相関関係がより緊密になる。
論文 参考訳(メタデータ) (2024-06-19T13:13:06Z) - Self-Calibrating Conformal Prediction [16.606421967131524]
本稿では,これらの予測に対して有限サンプル妥当性条件付き予測間隔とともに,校正点予測を実現するための自己校正等式予測を提案する。
本手法は,モデルキャリブレーションによりキャリブレーション間隔効率を向上し,特徴条件の妥当性に対して実用的な代替手段を提供する。
論文 参考訳(メタデータ) (2024-02-11T21:12:21Z) - Stecformer: Spatio-temporal Encoding Cascaded Transformer for
Multivariate Long-term Time Series Forecasting [11.021398675773055]
本稿では,特徴抽出とターゲット予測の観点から,問題の完全な解決法を提案する。
抽出のために,半適応グラフを含む効率的な時間的符号化抽出器を設計し,十分な時間的情報を取得する。
予測のために、異なる間隔間の相関を強化するためにカスケードデ予測器(CDP)を提案する。
論文 参考訳(メタデータ) (2023-05-25T13:00:46Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
我々は、既存の予測モデルの上に自己教師付きプレテキストタスクを持つ補助モデルを訓練し、自己教師付きエラーを付加的な特徴として用いて、非整合性スコアを推定する。
合成データと実データの両方を用いて、効率(幅)、欠陥、共形予測間隔の超過といった付加情報の利点を実証的に実証する。
論文 参考訳(メタデータ) (2023-02-23T18:57:14Z) - Prediction-Powered Inference [68.97619568620709]
予測を用いた推論は、実験データセットに機械学習システムからの予測を補足した場合に有効な統計的推論を行うためのフレームワークである。
このフレームワークは、手段、量子、線形およびロジスティック回帰係数などの量に対して証明可能な信頼区間を計算するための単純なアルゴリズムを生成する。
予測による推論により、研究者は機械学習を使用して、より有効な、よりデータ効率の高い結論を導き出すことができる。
論文 参考訳(メタデータ) (2023-01-23T18:59:28Z) - Sequential Predictive Conformal Inference for Time Series [16.38369532102931]
逐次データ(例えば時系列)に対する分布自由共形予測アルゴリズムを提案する。
具体的には,時系列データは交換不可能であり,既存の共形予測アルゴリズムでは適用できない性質を具体的に説明する。
論文 参考訳(メタデータ) (2022-12-07T05:07:27Z) - Predictive Inference with Feature Conformal Prediction [80.77443423828315]
本稿では,特徴空間への共形予測の範囲を拡大する特徴共形予測を提案する。
理論的観点からは、特徴共形予測は軽度の仮定の下で正則共形予測よりも確実に優れていることを示す。
提案手法は,バニラ共形予測だけでなく,他の適応共形予測手法と組み合わせることができる。
論文 参考訳(メタデータ) (2022-10-01T02:57:37Z) - Ensemble Conformalized Quantile Regression for Probabilistic Time Series
Forecasting [4.716034416800441]
本稿では,アンサンブル共形量子化回帰(EnCQR)と呼ばれる新しい確率予測手法を提案する。
EnCQRは、分布のないほぼ妥当な予測間隔(PI)を構築し、非定常およびヘテロセダスティック時系列データに適しており、任意の予測モデルの上に適用することができる。
その結果、EnCQRは量子レグレッションやコンフォメーション予測のみに基づくモデルよりも優れており、よりシャープで、より情報的で、有効なPIを提供することが示された。
論文 参考訳(メタデータ) (2022-02-17T16:54:20Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Applying Regression Conformal Prediction with Nearest Neighbors to time
series data [0.0]
本稿では,時系列データにおける共形予測器を用いて,信頼可能な予測区間を構築する方法を提案する。
提案手法は,FPTO-WNN手法の高速パラメータチューニング手法を基礎アルゴリズムとして用いた。
論文 参考訳(メタデータ) (2021-10-25T15:11:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。