Dynamic Importance Learning using Fisher Information Matrix (FIM) for Nonlinear Dynamic Mapping
- URL: http://arxiv.org/abs/2406.05395v2
- Date: Mon, 30 Dec 2024 07:20:27 GMT
- Title: Dynamic Importance Learning using Fisher Information Matrix (FIM) for Nonlinear Dynamic Mapping
- Authors: Vahid MohammadZadeh Eivaghi, Mahdi Aliyari Shoorehdeli,
- Abstract summary: This work presents a methodology for dynamically determining relevance scores in black-box models.
The proposed method leverages a gradient-based framework to uncover the importance of variance-driven features.
The practical utility of this approach is showcased through its application to an industrial pH neutralization process.
- Score: 0.2455468619225742
- License:
- Abstract: Understanding output variance is critical in modeling nonlinear dynamic systems, as it reflects the system's sensitivity to input variations and feature interactions. This work presents a methodology for dynamically determining relevance scores in black-box models while ensuring interpretability through an embedded decision module. This interpretable module, integrated into the first layer of the model, employs the Fisher Information Matrix (FIM) and logistic regression to compute relevance scores, interpreted as the probabilities of input neurons being active based on their contribution to the output variance. The proposed method leverages a gradient-based framework to uncover the importance of variance-driven features, capturing both individual contributions and complex feature interactions. These relevance scores are applied through element-wise transformations of the inputs, enabling the black-box model to prioritize features dynamically based on their impact on system output. This approach effectively bridges interpretability with the intricate modeling of nonlinear dynamics and time-dependent interactions. Simulation results demonstrate the method's ability to infer feature interactions while achieving superior performance in feature relevance compared to existing techniques. The practical utility of this approach is showcased through its application to an industrial pH neutralization process, where critical system dynamics are uncovered.
Related papers
- No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs [56.78271181959529]
This paper proposes a conceptual shift to modeling low-dimensional dynamical systems by departing from the traditional two-step modeling process.
Instead of first discovering a closed-form equation and then analyzing it, our approach, direct semantic modeling, predicts the semantic representation of the dynamical system.
Our approach not only simplifies the modeling pipeline but also enhances the transparency and flexibility of the resulting models.
arXiv Detail & Related papers (2025-01-30T18:36:48Z) - Identifiable Representation and Model Learning for Latent Dynamic Systems [0.0]
We study the problem of identifiable representation and model learning for latent dynamic systems.
We prove that, for linear and affine nonlinear latent dynamic systems with sparse input matrices, it is possible to identify the latent variables up to scaling.
arXiv Detail & Related papers (2024-10-23T13:55:42Z) - Learning Car-Following Behaviors Using Bayesian Matrix Normal Mixture Regression [17.828808886958736]
Car-following (CF) behaviors are crucial for microscopic traffic simulation.
Many data-driven methods, despite their robustness, operate as "black boxes" with limited interpretability.
This work introduces a Bayesian Matrix Normal Mixture Regression (MNMR) model that simultaneously captures feature correlations and temporal dynamics inherent in CF behaviors.
arXiv Detail & Related papers (2024-04-24T17:55:47Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - Learning Interacting Dynamical Systems with Latent Gaussian Process ODEs [13.436770170612295]
We study for the first time uncertainty-aware modeling of continuous-time dynamics of interacting objects.
Our model infers both independent dynamics and their interactions with reliable uncertainty estimates.
arXiv Detail & Related papers (2022-05-24T08:36:25Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Learning continuous models for continuous physics [94.42705784823997]
We develop a test based on numerical analysis theory to validate machine learning models for science and engineering applications.
Our results illustrate how principled numerical analysis methods can be coupled with existing ML training/testing methodologies to validate models for science and engineering applications.
arXiv Detail & Related papers (2022-02-17T07:56:46Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Divide and Rule: Recurrent Partitioned Network for Dynamic Processes [25.855428321990328]
Many dynamic processes are involved with interacting variables, from physical systems to sociological analysis.
Our goal is to represent a system with a part-whole hierarchy and discover the implied dependencies among intra-system variables.
The proposed architecture consists of (i) a perceptive module that extracts a hierarchical and temporally consistent representation of the observation at multiple levels, (ii) a deductive module for determining the relational connection between neurons at each level, and (iii) a statistical module that can predict the future by conditioning on the temporal distributional estimation.
arXiv Detail & Related papers (2021-06-01T06:45:56Z) - Meta-learning using privileged information for dynamics [66.32254395574994]
We extend the Neural ODE Process model to use additional information within the Learning Using Privileged Information setting.
We validate our extension with experiments showing improved accuracy and calibration on simulated dynamics tasks.
arXiv Detail & Related papers (2021-04-29T12:18:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.