Janus graphene nanoribbons with a single ferromagnetic zigzag edge
- URL: http://arxiv.org/abs/2406.05608v2
- Date: Sun, 20 Oct 2024 03:34:37 GMT
- Title: Janus graphene nanoribbons with a single ferromagnetic zigzag edge
- Authors: Shaotang Song, Yu Teng, Weichen Tang, Zhen Xu, Yuanyuan He, Jiawei Ruan, Takahiro Kojima, Wenping Hu, Franz J Giessibl, Hiroshi Sakaguchi, Steven G Louie, Jiong Lu,
- Abstract summary: Topological design of pi-electrons in zigzag-edged graphene nanoribbons (ZGNRs) leads to magnetic quantum phenomena and exotic quantum phases.
Eliminating cross-edge magnetic coupling in ZGNRs enables the realization of a new class of ferromagnetic quantum spin chains.
Here, we report a general approach for designing and fabricating such ferromagnetic GNRs in the form of Janus GNRs with two distinct edge configurations.
- Score: 5.160365538756164
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Topological design of pi-electrons in zigzag-edged graphene nanoribbons (ZGNRs) leads to a wealth of magnetic quantum phenomena and exotic quantum phases. Symmetric ZGNRs typically exhibit antiferromagnetically coupled spin-ordered edge states. Eliminating cross-edge magnetic coupling in ZGNRs not only enables the realization of a new class of ferromagnetic quantum spin chains, enabling the exploration of quantum spin physics and entanglement of multiple qubits in the 1D limit, but also establishes a long-sought carbon-based ferromagnetic transport channel, pivotal for ultimate scaling of GNR-based quantum electronics. However, designing such GNRs entails overcoming daunting challenges, including simultaneous breaking of structural and spin symmetries, and designing elegant precursors for asymmetric fabrication of reactive zigzag edges. Here, we report a general approach for designing and fabricating such ferromagnetic GNRs in the form of Janus GNRs with two distinct edge configurations. Guided by Lieb's theorem and topological classification theory, we devised two JGNRs by asymmetrically introduced a topological defect array of benzene motifs to one zigzag edge, while keeping the opposing zigzag edge unchanged. This breaks structural symmetry and creates a sublattice imbalance within each unit cell, initiating a spin symmetry breaking. Three Z-shape precursors are designed to fabricate one parent ZGNR and two JGNRs with an optimal lattice spacing of the defect array for a complete quench of the magnetic edge states at the defective edge. Characterization via scanning probe microscopy/spectroscopy and first-principles density functional theory confirms the successful fabrication of Janus GNRs with ferromagnetic ground state delocalised along the pristine zigzag edge.
Related papers
- Observation of Magnetic Devil's Staircase-Like Behavior in Quasiperiodic Qubit Lattices [55.2480439325792]
devil's staircase (DS) phenomenon is a fractal response of magnetization to external fields.<n>We uncover a wealth of abrupt magnetic transitions driven by increasing external magnetic fields within a simple yet effective Ising-model framework.<n>Our results challenge the prevailing view that DS behavior is limited to periodic systems.
arXiv Detail & Related papers (2025-07-24T21:39:06Z) - Emergent Kitaev materials in synthetic Fermi-Hubbard bilayers [49.1574468325115]
Bond-directional spin-spin interactions in a Fermi-Hubbard bilayer can be realized with ultracold fermions in Raman optical lattices.
We analyze the Fermi-liquid and Mott-insulating phases, highlighting a correspondence between Dirac and Majorana quasi-particles.
Our results establish that cold-atom quantum simulators based on Raman optical lattices can be a playground for extended Kitaev models.
arXiv Detail & Related papers (2025-04-22T10:07:56Z) - Controllable and Continuous Quantum Phase Transitions in Intrinsic Magnetic Topological Insulator [50.54133633499971]
We study the intrinsic magnetic topological material MnBi2Te4 in which the heavy n-type doping features are strongly suppressed.
Based on angle-resolved photoemission spectroscopy, transport measurements, and first-principles calculations, we reveal two magnetism-induced TPTs.
Our work paves the way for the realization of intrinsic magnetic topological states in MnBi2Te4 family and provides an ideal platform for achieving controllable and continuous TPTs.
arXiv Detail & Related papers (2025-03-08T03:46:54Z) - Harnessing Chiral Spin States in Molecular Nanomagnets for Quantum Technologies [44.1973928137492]
We show that chiral qubits naturally suppress always-on interactions that can not be switched off in weakly coupled qubits.
Our findings establish spin chirality engineering as a promising strategy for mitigating always-on interaction in entangling two chiral qubits in molecular quantum technologies.
arXiv Detail & Related papers (2025-01-21T08:23:12Z) - Building spin-1/2 antiferromagnetic Heisenberg chains with diaza-nanographenes [12.13904791704878]
Graphene nanostructures with pi-magnetism offer a chemically tunable platform to explore quantum magnetic interactions.
We demonstrate the successful on-surface synthesis of spin-1/2 antiferromagnetic Heisenberg chains with parity-dependent magnetization.
Our findings provide an effective strategy to construct nanographene spin chains and unveil the odd-even effect in their magnetic properties.
arXiv Detail & Related papers (2024-07-30T02:58:33Z) - Nonreciprocal Multipartite Entanglement in a two-cavity magnomechanical system [0.21990652930491852]
We propose a theoretical scheme for the generation of nonreciprocal multipartite entanglement in a two-mode cavity magnomechanical system.
In addition to bipartite entanglement, we also present the idea of a bidirectional contrast ratio, which quantifies the nonreciprocity in tripartite entanglements.
arXiv Detail & Related papers (2024-05-25T13:25:47Z) - Ferrimagnetism of ultracold fermions in a multi-band Hubbard system [34.95884242542007]
We report on signatures of a ferrimagnetic state realized in a Lieb lattice at half-filling.
We demonstrate its robustness when increasing repulsive interactions from the non-interacting to the Heisenberg regime.
Our work paves the way towards exploring exotic phases in related multi-orbital models such as quantum spin liquids in kagome lattices and heavy fermion behavior in Kondo models.
arXiv Detail & Related papers (2024-04-26T17:33:26Z) - Construction of topological quantum magnets from atomic spins on surfaces [6.884621917906393]
We demonstrate topological quantum Heisenberg spin lattices, engineered with spin chains and two-dimensional spin arrays in a scanning tunnelling microscope (STM)
Our results provide an important bottom-up approach to simulating exotic quantum many-body phases of interacting spins.
arXiv Detail & Related papers (2024-03-21T05:41:20Z) - A Floquet-Rydberg quantum simulator for confinement in $\mathbb{Z}_2$
gauge theories [44.99833362998488]
Recent advances in the field of quantum technologies have opened up the road for the realization of small-scale quantum simulators.
We present a scalable Floquet scheme for the quantum simulation of the real-time dynamics in a $mathbbZ$ LGT.
We show that an observation of gauge-invariant confinement dynamics in the Floquet-Rydberg setup is at reach of current experimental techniques.
arXiv Detail & Related papers (2023-11-28T13:01:24Z) - Revealing Emergent Magnetic Charge in an Antiferromagnet with Diamond
Quantum Magnetometry [42.60602838972598]
Whirling topological textures play a key role in exotic phases of magnetic materials and offer promise for logic and memory applications.
In antiferromagnets, these textures exhibit enhanced stability and faster dynamics with respect to ferromagnetic counterparts.
One technique that meets the demand of highly sensitive vectorial magnetic field sensing with negligible backaction is diamond quantum magnetometry.
arXiv Detail & Related papers (2023-03-21T18:30:20Z) - Quantum phase transition in magnetic nanographenes on a lead
superconductor [21.166883497183687]
Quantum spins are proposed to host exotic interactions with superconductivity.
Magnetic nanographenes have been proven to host intrinsic quantum magnetism due to their negligible spin orbital coupling and crystal field splitting.
We fabricate three atomically precise nanographenes with the same magnetic ground state of spin S=1/2 on Pb (111) through engineering sublattice imbalance in graphene honeycomb lattice.
arXiv Detail & Related papers (2022-07-12T04:52:02Z) - Hole Spin Qubits in Ge Nanowire Quantum Dots: Interplay of Orbital
Magnetic Field, Strain, and Growth Direction [0.0]
Hole spin qubits in quasi one-dimensional structures are a promising platform for quantum information processing.
We show that at the magnetic field values at which qubits are operated, orbital effects of magnetic fields can strongly affect the response of the spin qubit.
We study one-dimensional hole systems in Ge under the influence of electric and magnetic fields applied perpendicularly to the device.
arXiv Detail & Related papers (2021-10-28T12:00:26Z) - Phase diagram of a distorted kagome antiferromagnet and application to
Y-kapellasite [50.591267188664666]
We reveal a rich ground state phase diagram even at the classical level.
The presented model opens a new direction in the study of kagome antiferromagnets.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Designer Magnetism in High Entropy Oxides [41.74498230885008]
Disorder can have a dominating influence on correlated and quantum materials.
In magnetic systems, spin and exchange disorder can provide access to quantum criticality, frustration, and spin dynamics.
We show that high entropy oxides present an unexplored route to designing quantum materials.
arXiv Detail & Related papers (2021-04-12T15:21:48Z) - Rectification induced by geometry in two-dimensional quantum spin
lattices [58.720142291102135]
We address the role of geometrical asymmetry in the occurrence of spin rectification in two-dimensional quantum spin chains.
We show that geometrical asymmetry, along with inhomogeneous magnetic fields, can induce spin current rectification even in the XX model.
arXiv Detail & Related papers (2020-12-02T18:10:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.