Heart Sound Segmentation Using Deep Learning Techniques
- URL: http://arxiv.org/abs/2406.05653v1
- Date: Sun, 9 Jun 2024 05:30:05 GMT
- Title: Heart Sound Segmentation Using Deep Learning Techniques
- Authors: Manas Madine,
- Abstract summary: This paper presents a novel approach for heart sound segmentation and classification into S1 (LUB) and S2 (DUB) sounds.
We employ FFT-based filtering, dynamic programming for event detection, and a Siamese network for robust classification.
Our method demonstrates superior performance on the PASCAL heart sound dataset compared to existing approaches.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heart disease remains a leading cause of mortality worldwide. Auscultation, the process of listening to heart sounds, can be enhanced through computer-aided analysis using Phonocardiogram (PCG) signals. This paper presents a novel approach for heart sound segmentation and classification into S1 (LUB) and S2 (DUB) sounds. We employ FFT-based filtering, dynamic programming for event detection, and a Siamese network for robust classification. Our method demonstrates superior performance on the PASCAL heart sound dataset compared to existing approaches.
Related papers
- Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - A Comprehensive Survey on Heart Sound Analysis in the Deep Learning Era [54.53921568420471]
Heart sound auscultation has been applied in clinical usage for early screening of cardiovascular diseases.
Deep learning has outperformed classic machine learning in many research fields.
arXiv Detail & Related papers (2023-01-23T10:58:45Z) - Segmentation-free Heart Pathology Detection Using Deep Learning [12.065014651638943]
We propose a novel segmentation-free heart sound classification method.
Specifically, we apply discrete wavelet transform to denoise the signal, followed by feature extraction and feature reduction.
Support Vector Machines and Deep Neural Networks are utilised for classification.
arXiv Detail & Related papers (2021-08-09T16:09:30Z) - Heart Sound Classification Considering Additive Noise and Convolutional
Distortion [2.63046959939306]
Automatic analysis of heart sounds for abnormality detection is faced with the challenges of additive noise and sensor-dependent degradation.
This paper aims to develop methods to address the cardiac abnormality detection problem when both types of distortions are present in the cardiac auscultation sound.
The proposed method paves the way towards developing computer-aided cardiac auscultation systems in noisy environments using low-cost stethoscopes.
arXiv Detail & Related papers (2021-06-03T14:09:04Z) - A Novel Transfer Learning-Based Approach for Screening Pre-existing
Heart Diseases Using Synchronized ECG Signals and Heart Sounds [0.5621251909851629]
Diagnosing pre-existing heart diseases early in life is important to prevent complications such as pulmonary hypertension, heart rhythm problems, blood clots, heart failure and sudden cardiac arrest.
To identify such diseases, phonocardiogram (PCG) and electrocardiogram (ECG) waveforms convey important information.
Here, we evaluate this hypothesis on a subset of the PhysioNet Challenge 2016 dataset which contains simultaneously acquired PCG and ECG recordings.
Our novel Dual-Convolutional Neural Network based approach uses transfer learning to tackle the problem of having limited amounts of simultaneous PCG and ECG data that is publicly available.
arXiv Detail & Related papers (2021-02-02T19:51:12Z) - Noise-Resilient Automatic Interpretation of Holter ECG Recordings [67.59562181136491]
We present a three-stage process for analysing Holter recordings with robustness to noisy signal.
First stage is a segmentation neural network (NN) with gradientdecoder architecture which detects positions of heartbeats.
Second stage is a classification NN which will classify heartbeats as wide or narrow.
Third stage is a boosting decision trees (GBDT) on top of NN features that incorporates patient-wise features.
arXiv Detail & Related papers (2020-11-17T16:15:49Z) - A Robust Interpretable Deep Learning Classifier for Heart Anomaly
Detection Without Segmentation [37.70077538403524]
We argue the importance of heart sound segmentation as a prior step for heart sound classification.
We then propose a robust classifier for abnormal heart sound detection.
Our new classifier is also shown to be robust, stable and most importantly, explainable, with an accuracy of almost 100% on the widely used PhysioNet dataset.
arXiv Detail & Related papers (2020-05-21T06:36:28Z) - Classification of Arrhythmia by Using Deep Learning with 2-D ECG
Spectral Image Representation [3.3426603061273994]
We propose a two-dimensional (2-D) convolutional neural network (CNN) model for the classification of ECG signals into eight classes.
We achieved a state-of-the-art average classification accuracy of 99.11%, which is better than those of recently reported results in classifying similar types of arrhythmias.
arXiv Detail & Related papers (2020-05-14T12:11:41Z) - Heart Sound Segmentation using Bidirectional LSTMs with Attention [37.62160903348547]
We propose a novel framework for the segmentation of phonocardiogram (PCG) signals into heart states.
We exploit recent advancements in attention based learning to segment the PCG signal.
The proposed method attains state-of-the-art performance on multiple benchmarks including both human and animal heart recordings.
arXiv Detail & Related papers (2020-04-02T02:09:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.