論文の概要: VillagerAgent: A Graph-Based Multi-Agent Framework for Coordinating Complex Task Dependencies in Minecraft
- arxiv url: http://arxiv.org/abs/2406.05720v1
- Date: Sun, 9 Jun 2024 10:21:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 18:27:03.039252
- Title: VillagerAgent: A Graph-Based Multi-Agent Framework for Coordinating Complex Task Dependencies in Minecraft
- Title(参考訳): VillagerAgent:Minecraftの複雑なタスク依存をコーディネートするためのグラフベースのマルチエージェントフレームワーク
- Authors: Yubo Dong, Xukun Zhu, Zhengzhe Pan, Linchao Zhu, Yi Yang,
- Abstract要約: 我々は,複雑なエージェント間の依存関係を解決するために,非巡回グラフ多エージェントフレームワーク VillagerAgent を導入する。
VillagerBenchに関する実証的な評価は、VillierAgentが既存のAgentVerseモデルより優れていることを示す。
- 参考スコア(独自算出の注目度): 46.19145184507293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we aim to evaluate multi-agent systems against complex dependencies, including spatial, causal, and temporal constraints. First, we construct a new benchmark, named VillagerBench, within the Minecraft environment.VillagerBench comprises diverse tasks crafted to test various aspects of multi-agent collaboration, from workload distribution to dynamic adaptation and synchronized task execution. Second, we introduce a Directed Acyclic Graph Multi-Agent Framework VillagerAgent to resolve complex inter-agent dependencies and enhance collaborative efficiency. This solution incorporates a task decomposer that creates a directed acyclic graph (DAG) for structured task management, an agent controller for task distribution, and a state manager for tracking environmental and agent data. Our empirical evaluation on VillagerBench demonstrates that VillagerAgent outperforms the existing AgentVerse model, reducing hallucinations and improving task decomposition efficacy. The results underscore VillagerAgent's potential in advancing multi-agent collaboration, offering a scalable and generalizable solution in dynamic environments. The source code is open-source on GitHub (https://github.com/cnsdqd-dyb/VillagerAgent).
- Abstract(参考訳): 本稿では,空間的,因果的,時間的制約を含む複雑な依存関係に対して,マルチエージェントシステムを評価することを目的とする。
VillagerBenchは,ワークロードの分散から動的適応,同期タスクの実行に至るまで,マルチエージェントコラボレーションのさまざまな側面をテストするために開発された多様なタスクから構成される。
第2に、複雑なエージェント間の依存関係を解消し、協調効率を高めるための、非巡回グラフ多エージェントフレームワーク VillagerAgent を導入する。
本ソリューションは、構造化されたタスク管理のための有向非循環グラフ(DAG)を作成するタスクデコンパイラ、タスク分散のためのエージェントコントローラ、環境およびエージェントデータを追跡する状態マネージャを含む。
VillagerBenchに関する実証的な評価は、VillierAgentが既存のAgentVerseモデルより優れ、幻覚を減らし、タスクの分解効率を向上させることを示した。
この結果は、動的環境においてスケーラブルで一般化可能なソリューションを提供する、マルチエージェントコラボレーションの進展におけるVillierAgentの可能性を裏付けている。
ソースコードはGitHubで公開されている(https://github.com/cnsdqd-dyb/VillagerAgent)。
関連論文リスト
- GenAgent: Build Collaborative AI Systems with Automated Workflow Generation -- Case Studies on ComfyUI [64.57616646552869]
本稿では、モデル、データソース、パイプラインを統合し、複雑で多様なタスクを解決するためにパフォーマンスを向上させるために使用される協調AIシステムについて検討する。
我々は、LLMベースのフレームワークであるGenAgentを紹介した。
その結果、GenAgentは実行レベルおよびタスクレベルの評価においてベースラインアプローチよりも優れていた。
論文 参考訳(メタデータ) (2024-09-02T17:44:10Z) - AgentGym: Evolving Large Language Model-based Agents across Diverse Environments [116.97648507802926]
大規模言語モデル(LLM)はそのようなエージェントを構築するための有望な基盤と考えられている。
我々は、自己進化能力を備えた一般機能 LLM ベースのエージェントを構築するための第一歩を踏み出す。
我々はAgentGymを提案する。AgentGymは、幅広い、リアルタイム、ユニフォーマット、並行エージェント探索のための様々な環境とタスクを特徴とする新しいフレームワークである。
論文 参考訳(メタデータ) (2024-06-06T15:15:41Z) - TDAG: A Multi-Agent Framework based on Dynamic Task Decomposition and
Agent Generation [45.028795422801764]
動的タスク分解・エージェント生成(TDAG)に基づくマルチエージェントフレームワークを提案する。
このフレームワークは複雑なタスクを小さなサブタスクに動的に分解し、それぞれが特定の生成されたサブエージェントに割り当てる。
ItineraryBenchは、さまざまな複雑さのタスク間でのメモリ、計画、ツール使用量のエージェントの能力を評価するように設計されている。
論文 参考訳(メタデータ) (2024-02-15T18:27:37Z) - CCA: Collaborative Competitive Agents for Image Editing [59.54347952062684]
本稿では,CCA(Collaborative Competitive Agents)の新たな生成モデルを提案する。
複数のLarge Language Models (LLM) ベースのエージェントを使って複雑なタスクを実行する。
この論文の主な貢献は、制御可能な中間ステップと反復最適化を備えたマルチエージェントベースの生成モデルの導入である。
論文 参考訳(メタデータ) (2024-01-23T11:46:28Z) - Agents meet OKR: An Object and Key Results Driven Agent System with
Hierarchical Self-Collaboration and Self-Evaluation [25.308341461293857]
OKR-Agentは、タスク解決におけるLarge Language Models(LLM)の機能を強化するように設計されている。
我々のフレームワークには、階層オブジェクトとキー結果の生成とマルチレベル評価という、2つの新しいモジュールが含まれています。
論文 参考訳(メタデータ) (2023-11-28T06:16:30Z) - A Dynamic LLM-Powered Agent Network for Task-Oriented Agent Collaboration [55.35849138235116]
本稿では,様々なタスクやドメインに対する動的コミュニケーション構造において,候補からエージェントのチームを自動的に選択する手法を提案する。
具体的には, LLMを利用したエージェント協調のための動的LLMパワーエージェントネットワーク(textDyLAN$)というフレームワークを構築した。
我々は、コード生成、意思決定、一般的な推論、算術的推論タスクにおいて、適度な計算コストで、DyLANが強力なベースラインを上回ることを実証する。
論文 参考訳(メタデータ) (2023-10-03T16:05:48Z) - AutoAgents: A Framework for Automatic Agent Generation [27.74332323317923]
AutoAgentsは、さまざまなタスクに応じてAIチームを構築するために、複数の専門エージェントを適応的に生成し、コーディネートする革新的なフレームワークである。
各種ベンチマーク実験により,AutoAgentsは既存のマルチエージェント手法よりも一貫性と正確な解を生成することが示された。
論文 参考訳(メタデータ) (2023-09-29T14:46:30Z) - AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors [93.38830440346783]
本稿では,その構成をより高機能なシステムとして協調的に調整できるマルチエージェントフレームワークを提案する。
実験により,フレームワークが単一エージェントより優れたマルチエージェントグループを効果的に展開できることが実証された。
これらの振舞いの観点から、我々は、ポジティブなものを活用し、ネガティブなものを緩和し、マルチエージェントグループの協調可能性を改善するためのいくつかの戦略について議論する。
論文 参考訳(メタデータ) (2023-08-21T16:47:11Z) - Heterogeneous Embodied Multi-Agent Collaboration [21.364827833498254]
不均一なマルチエージェントタスクは現実世界のシナリオでは一般的である。
本稿では,複数の異種エージェントが協調して異種物体を検出し,適切な位置に配置する異種マルチエージェント・タイピング・アップタスクを提案する。
本稿では, 乱れ検出に基づく階層的決定モデル, 合理的な受容器予測, およびハンドシェイクに基づくグループ通信機構を提案する。
論文 参考訳(メタデータ) (2023-07-26T04:33:05Z) - MACRPO: Multi-Agent Cooperative Recurrent Policy Optimization [17.825845543579195]
我々はtextitMulti-Agent Cooperative Recurrent Proximal Policy Optimization (MACRPO) と呼ばれる新しいマルチエージェントアクター批判手法を提案する。
我々は、批評家のネットワークアーキテクチャにおいてリカレント・レイヤを使用し、メタ・トラジェクトリを使用してリカレント・レイヤをトレーニングする新しいフレームワークを提案する。
連続的および離散的な行動空間を持つ3つの挑戦的マルチエージェント環境において,本アルゴリズムの評価を行った。
論文 参考訳(メタデータ) (2021-09-02T12:43:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。