Physics-Informed Bayesian Optimization of Variational Quantum Circuits
- URL: http://arxiv.org/abs/2406.06150v1
- Date: Mon, 10 Jun 2024 10:17:06 GMT
- Title: Physics-Informed Bayesian Optimization of Variational Quantum Circuits
- Authors: Kim A. Nicoli, Christopher J. Anders, Lena Funcke, Tobias Hartung, Karl Jansen, Stefan Kühn, Klaus-Robert Müller, Paolo Stornati, Pan Kessel, Shinichi Nakajima,
- Abstract summary: We propose a novel and powerful method to harness Bayesian optimization for Variational Quantum Eigensolvers (VQEs)
We derive a VQE- Kernel which incorporates important prior information about quantum circuits.
We also propose a novel acquisition function for Bayesian optimization called Maximum Improvement over Confident Regions (EMICoRe)
- Score: 13.530592183149661
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a novel and powerful method to harness Bayesian optimization for Variational Quantum Eigensolvers (VQEs) -- a hybrid quantum-classical protocol used to approximate the ground state of a quantum Hamiltonian. Specifically, we derive a VQE-kernel which incorporates important prior information about quantum circuits: the kernel feature map of the VQE-kernel exactly matches the known functional form of the VQE's objective function and thereby significantly reduces the posterior uncertainty. Moreover, we propose a novel acquisition function for Bayesian optimization called Expected Maximum Improvement over Confident Regions (EMICoRe) which can actively exploit the inductive bias of the VQE-kernel by treating regions with low predictive uncertainty as indirectly ``observed''. As a result, observations at as few as three points in the search domain are sufficient to determine the complete objective function along an entire one-dimensional subspace of the optimization landscape. Our numerical experiments demonstrate that our approach improves over state-of-the-art baselines.
Related papers
- Application of Langevin Dynamics to Advance the Quantum Natural Gradient Optimization Algorithm [47.47843839099175]
A Quantum Natural Gradient (QNG) algorithm for optimization of variational quantum circuits has been proposed recently.
In this study, we employ the Langevin equation with a QNG force to demonstrate that its discrete-time solution gives a generalized form, which we call Momentum-QNG.
arXiv Detail & Related papers (2024-09-03T15:21:16Z) - Towards Efficient Quantum Computation of Molecular Ground State Energies using Bayesian Optimization with Priors over Surface Topology [0.0]
Variational Quantum Eigensolvers (VQEs) represent a promising approach to computing molecular ground states and energies on modern quantum computers.
We propose modifications to the standard Bayesian optimization algorithm to leverage few-shot circuit observations to solve VQEs with fewer quantum resources.
arXiv Detail & Related papers (2024-07-10T18:01:50Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Fermionic Adaptive Sampling Theory for Variational Quantum Eigensolvers [0.0]
ADAPT-VQE suffers from a significant measurement overhead when estimating the importance of operators in the wave function.
We proposeFAST-VQE, a method for selecting operators based on importance metrics solely derived from the populations of Slater determinants in the wave function.
arXiv Detail & Related papers (2023-03-13T18:57:18Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - A Convergence Theory for Over-parameterized Variational Quantum
Eigensolvers [21.72347971869391]
The Variational Quantum Eigensolver (VQE) is a promising candidate for quantum applications on near-term Noisy Intermediate-Scale Quantum (NISQ) computers.
We provide the first rigorous analysis of the convergence of VQEs in the over- parameterization regime.
arXiv Detail & Related papers (2022-05-25T04:06:50Z) - Fundamental limitations on optimization in variational quantum
algorithms [7.165356904023871]
A leading paradigm to establish such near-term quantum applications is variational quantum algorithms (VQAs)
We prove that for a broad class of such random circuits, the variation range of the cost function vanishes exponentially in the number of qubits with a high probability.
This result can unify the restrictions on gradient-based and gradient-free optimizations in a natural manner and reveal extra harsh constraints on the training landscapes of VQAs.
arXiv Detail & Related papers (2022-05-10T17:14:57Z) - High Fidelity Quantum State Transfer by Pontryagin Maximum Principle [68.8204255655161]
We address the problem of maximizing the fidelity in a quantum state transformation process satisfying the Liouville-von Neumann equation.
By introducing fidelity as the performance index, we aim at maximizing the similarity of the final state density operator with the one of the desired target state.
arXiv Detail & Related papers (2022-03-07T13:27:26Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z) - Exploring entanglement and optimization within the Hamiltonian
Variational Ansatz [0.4881924950569191]
We study a family of quantum circuits called the Hamiltonian Variational Ansatz (HVA)
HVA exhibits favorable structural properties such as mild or entirely absent barren plateaus and a restricted state space.
HVA can find accurate approximations to the ground states of a modified Haldane-Shastry Hamiltonian on a ring.
arXiv Detail & Related papers (2020-08-07T01:28:26Z) - Quantum-optimal-control-inspired ansatz for variational quantum
algorithms [105.54048699217668]
A central component of variational quantum algorithms (VQA) is the state-preparation circuit, also known as ansatz or variational form.
Here, we show that this approach is not always advantageous by introducing ans"atze that incorporate symmetry-breaking unitaries.
This work constitutes a first step towards the development of a more general class of symmetry-breaking ans"atze with applications to physics and chemistry problems.
arXiv Detail & Related papers (2020-08-03T18:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.