Feasibility of accelerating incompressible computational fluid dynamics simulations with fault-tolerant quantum computers
- URL: http://arxiv.org/abs/2406.06323v2
- Date: Mon, 16 Sep 2024 19:45:46 GMT
- Title: Feasibility of accelerating incompressible computational fluid dynamics simulations with fault-tolerant quantum computers
- Authors: John Penuel, Amara Katabarwa, Peter D. Johnson, Collin Farquhar, Yudong Cao, Michael C. Garrett,
- Abstract summary: This study explores the feasibility of using fault-tolerant quantum computers to improve the speed and accuracy of CFD simulations.
We estimate the quantum resources required for the simpler case of drag force on a sphere.
- Score: 1.7812428873698407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Across industries, traditional design and engineering workflows are being upgraded to simulation-driven processes. Many workflows include computational fluid dynamics (CFD). Simulations of turbulent flow are notorious for high compute costs and reliance on approximate methods that compromise accuracy. Improvements in the speed and accuracy of CFD calculations would potentially reduce design workflow costs by reducing computational costs and eliminating the need for experimental testing. This study explores the feasibility of using fault-tolerant quantum computers to improve the speed and accuracy of CFD simulations in the incompressible or weakly compressible regime. For the example of simulation-driven ship design, we consider simulations for calculating the drag force in steady-state flows, and provide analysis on economic utility and classical hardness. As a waypoint toward assessing the feasibility of our chosen quantum approach, we estimate the quantum resources required for the simpler case of drag force on a sphere. We estimate the product of (logical qubits)$\times$($T$ gates) to range from $10^{22}$ to $10^{28}$. These high initial estimates suggest that future quantum computers are unlikely to provide utility for incompressible CFD applications unless significant algorithmic advancements or alternative quantum approaches are developed. Encouraged by applications in quantum chemistry that have realized orders-of-magnitude improvements as they matured, we identify the most promising next steps for quantum resource reduction as we work to scale up our estimates from spheres to utility-scale problems with more complex geometry.
Related papers
- Subspace-Based Local Compilation of Variational Quantum Circuits for Large-Scale Quantum Many-Body Simulation [0.0]
This paper proposes a hybrid quantum-classical algorithm for compiling the time-evolution operator.
It achieves a 95% reduction in circuit depth compared to Trotterization while maintaining accuracy.
We estimate the gate count needed to execute the quantum simulations using the LSVQC on near-term quantum computing architectures.
arXiv Detail & Related papers (2024-07-19T09:50:01Z) - Enabling Large-Scale and High-Precision Fluid Simulations on Near-Term Quantum Computers [17.27937804402152]
Quantum computational fluid dynamics (QCFD) offers a promising alternative to classical computational fluid dynamics (CFD)
This paper introduces a comprehensive QCFD method, including an iterative method "Iterative-QLS" that suppresses error in quantum linear solver.
We implement our method on a superconducting quantum computer, demonstrating successful simulations of steady Poiseuille flow and unsteady acoustic wave propagation.
arXiv Detail & Related papers (2024-06-10T07:21:23Z) - TANQ-Sim: Tensorcore Accelerated Noisy Quantum System Simulation via QIR on Perlmutter HPC [16.27167995786167]
TANQ-Sim is a full-scale density matrix based simulator designed to simulate practical deep circuits with both coherent and non-coherent noise.
To address the significant computational cost associated with such simulations, we propose a new density-matrix simulation approach.
To optimize performance, we also propose specific gate fusion techniques for density matrix simulation.
arXiv Detail & Related papers (2024-04-19T21:16:29Z) - Quantum Tunneling: From Theory to Error-Mitigated Quantum Simulation [49.1574468325115]
This study presents the theoretical background and the hardware aware circuit implementation of a quantum tunneling simulation.
We use error mitigation techniques (ZNE and REM) and multiprogramming of the quantum chip for solving the hardware under-utilization problem.
arXiv Detail & Related papers (2024-04-10T14:27:07Z) - Quantum Computing Enhanced Service Ecosystem for Simulation in Manufacturing [56.61654656648898]
We propose a framework for a quantum computing-enhanced service ecosystem for simulation in manufacturing.
We analyse two high-value use cases with the aim of a quantitative evaluation of these new computing paradigms for industrially-relevant settings.
arXiv Detail & Related papers (2024-01-19T11:04:14Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
We propose an On-Chip Hardware-Aware Quantization framework, performing hardware-aware mixed-precision quantization on deployed edge devices.
For efficiency metrics, we built an On-Chip Quantization Aware pipeline, which allows the quantization process to perceive the actual hardware efficiency of the quantization operator.
For accuracy metrics, we propose Mask-Guided Quantization Estimation technology to effectively estimate the accuracy impact of operators in the on-chip scenario.
arXiv Detail & Related papers (2023-09-05T04:39:34Z) - Hybrid quantum algorithms for flow problems [0.0]
We debut here a high performance quantum simulator which we term QFlowS (Quantum Flow Simulator)
We first choose to simulate two well known flows using QFlowS and demonstrate a previously unseen, full gate-level implementation of a hybrid and high precision Quantum Linear Systems Algorithms (QLSA)
This work suggests a path towards quantum simulation of fluid flows, and highlights the special considerations needed at the gate level implementation of QC.
arXiv Detail & Related papers (2023-07-01T17:39:21Z) - Efficient Mean-Field Simulation of Quantum Circuits Inspired by Density
Functional Theory [1.3561290928375374]
Exact simulations of quantum circuits (QCs) are currently limited to $sim$50 qubits.
Here we show simulations of QCs with a method inspired by density functional theory (DFT)
Our calculations can predict marginal single-qubit probabilities with over 90% accuracy in several classes of QCs with universal gate sets.
arXiv Detail & Related papers (2022-10-29T02:12:15Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements.
Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs.
arXiv Detail & Related papers (2022-10-03T09:32:28Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.