Parallel Quantum Local Search via Evolutionary Mechanism
- URL: http://arxiv.org/abs/2406.06445v1
- Date: Mon, 10 Jun 2024 16:35:52 GMT
- Title: Parallel Quantum Local Search via Evolutionary Mechanism
- Authors: Chen-Yu Liu, Kuan-Cheng Chen,
- Abstract summary: We propose an innovative Parallel Quantum Local Search (PQLS) methodology that leverages the capabilities of small-scale quantum computers.
Our approach transcends this constraint by simultaneously executing multiple QLS pathways and aggregating their most effective outcomes at certain intervals to establish a generation''
Our findings demonstrate the profound impact of parallel quantum computing in enhancing the resolution of Ising problems.
- Score: 0.9208007322096533
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We propose an innovative Parallel Quantum Local Search (PQLS) methodology that leverages the capabilities of small-scale quantum computers to efficiently address complex combinatorial optimization problems. Traditional Quantum Local Search (QLS) methods face limitations due to the sequential nature of solving sub-problems, which arises from dependencies between their solutions. Our approach transcends this constraint by simultaneously executing multiple QLS pathways and aggregating their most effective outcomes at certain intervals to establish a ``generation''. Each subsequent generation commences with the optimal solution from its predecessor, thereby significantly accelerating the convergence towards an optimal solution. Our findings demonstrate the profound impact of parallel quantum computing in enhancing the resolution of Ising problems, which are synonymous with combinatorial optimization challenges.
Related papers
- A Monte Carlo Tree Search approach to QAOA: finding a needle in the haystack [0.0]
variational quantum algorithms (VQAs) are a promising family of hybrid quantum-classical methods tailored to cope with the limited capability of near-term quantum hardware.
We show that leveraging regular parameter patterns deeply affects the decision-tree structure and allows for a flexible and noise-resilient optimization strategy.
arXiv Detail & Related papers (2024-08-22T18:00:02Z) - Quantum Local Search for Traveling Salesman Problem with Path-Slicing Strategy [1.8186826508785554]
We present novel path-slicing strategies integrated with quantum local search to optimize solutions for the Traveling Salesman Problem (TSP)
We explore various path slicing methods, including k-means and anti-k-means clustering, to divide the TSP into manageable subproblems.
These are then solved using quantum or classical solvers.
arXiv Detail & Related papers (2024-07-18T15:55:01Z) - Performant near-term quantum combinatorial optimization [1.1999555634662633]
We present a variational quantum algorithm for solving optimization problems with linear-depth circuits.
Our algorithm uses an ansatz composed of Hamiltonian generators designed to control each term in the target quantum function.
We conclude our performant and resource-minimal approach is a promising candidate for potential quantum computational advantages.
arXiv Detail & Related papers (2024-04-24T18:49:07Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Quantum-Informed Recursive Optimization Algorithms [0.0]
We propose and implement a family of quantum-informed recursive optimization (QIRO) algorithms for optimization problems.
Our approach leverages quantum resources to obtain information that is used in problem-specific classical reduction steps.
We use backtracking techniques to further improve the performance of the algorithm without increasing the requirements on the quantum hardware.
arXiv Detail & Related papers (2023-08-25T18:02:06Z) - Multi-Objective Optimization and Network Routing with Near-Term Quantum
Computers [0.2150989251218736]
We develop a scheme with which near-term quantum computers can be applied to solve multi-objective optimization problems.
We focus on an implementation based on the quantum approximate optimization algorithm (QAOA)
arXiv Detail & Related papers (2023-08-16T09:22:01Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.