Leveraging modular values in quantum algorithms: the Deutsch-Jozsa
- URL: http://arxiv.org/abs/2406.06803v1
- Date: Mon, 10 Jun 2024 21:17:07 GMT
- Title: Leveraging modular values in quantum algorithms: the Deutsch-Jozsa
- Authors: Lorena Ballesteros Ferraz, Timoteo Carletti, Yves Caudano,
- Abstract summary: We present a novel approach to quantum algorithms, by taking advantage of modular values.
We focus on the problem of ascertaining whether a given function acting on a set of binary values is constant.
The proposed method, relying on the use of modular values, provides a high number of degrees of freedom for optimizing the new algorithm.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a novel approach to quantum algorithms, by taking advantage of modular values, i.e., complex and unbounded quantities resulting from specific post-selected measurement scenarios. Our focus is on the problem of ascertaining whether a given function acting on a set of binary values is constant (uniformly yielding outputs of either all 0 or all 1), or balanced (a situation wherein half of the outputs are 0 and the other half are 1). Such problem can be solved by relying on the Deutsch-Jozsa algorithm. The proposed method, relying on the use of modular values, provides a high number of degrees of freedom for optimizing the new algorithm inspired from the Deutsch-Jozsa one. In particular, we explore meticulously the choices of the pre- and post-selected states. We eventually test the novel theoretical algorithm on a quantum computing platform. While the outcomes are currently not on par with the conventional approach, they nevertheless shed light on potential for future improvements, especially with less-optimized algorithms. We are thus confidend that the proposed proof of concept could prove its validity in bridging quantum algorithms and modular values research fields.
Related papers
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - When can you trust feature selection? -- I: A condition-based analysis
of LASSO and generalised hardness of approximation [49.1574468325115]
We show how no (randomised) algorithm can determine the correct support sets (with probability $> 1/2$) of minimisers of LASSO when reading approximate input.
For ill-posed inputs, the algorithm runs forever, hence, it will never produce a wrong answer.
For any algorithm defined on an open set containing a point with infinite condition number, there is an input for which the algorithm will either run forever or produce a wrong answer.
arXiv Detail & Related papers (2023-12-18T18:29:01Z) - Generalized quantum Arimoto-Blahut algorithm and its application to
quantum information bottleneck [55.22418739014892]
We generalize the quantum Arimoto-Blahut algorithm by Ramakrishnan et al.
We apply our algorithm to the quantum information bottleneck with three quantum systems.
Our numerical analysis shows that our algorithm is better than their algorithm.
arXiv Detail & Related papers (2023-11-19T00:06:11Z) - Making the cut: two methods for breaking down a quantum algorithm [0.0]
It remains a major challenge to find quantum algorithms that may reach computational advantage in the present era of noisy, small-scale quantum hardware.
We identify and characterize two methods of breaking down'' quantum algorithms into rounds of lower (query) depth.
We show that for the first problem parallelization offers the best performance, while for the second is the better choice.
arXiv Detail & Related papers (2023-05-17T18:00:06Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Ising formulation of integer optimization problems for utilizing quantum
annealing in iterative improvement strategy [1.14219428942199]
We propose an Ising formulation of integer optimization problems to utilize quantum annealing in the iterative improvement strategy.
We analytically show that a first-order phase transition is successfully avoided for a fully connected ferro Potts model if the overlap between a ground state and a candidate solution exceeds a threshold.
arXiv Detail & Related papers (2022-11-08T02:12:49Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - Implementable Hybrid Quantum Ant Colony Optimization Algorithm [0.0]
We propose a new hybrid quantum algorithm to produce approximate solutions for NP-hard problems.
We develop an improved algorithm that can be truly implemented on near-term quantum computers.
The benchmarks made by simulating the noiseless quantum circuit and the experiments made on IBM quantum computers show the validity of the algorithm.
arXiv Detail & Related papers (2021-07-08T13:50:51Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - Improving the Quantum Approximate Optimization Algorithm with
postselection [0.0]
Combinatorial optimization is among the main applications envisioned for near-term and fault-tolerant quantum computers.
We consider a well-studied quantum algorithm for optimization: the Quantum Approximate Optimization Algorithm (QAOA) applied to the MaxCut problem on 3-regular graphs.
We derive theoretical upper and lower bounds showing that a constant (though small) increase of the fraction of satisfied edges is indeed achievable.
arXiv Detail & Related papers (2020-11-10T22:17:50Z) - Quantum Assisted Eigensolver [0.0]
We propose a hybrid quantum-classical algorithm for approxing the ground state and ground state energy of a Hamiltonian.
The output from the quantum part of the algorithm is utilized as input for the classical computer.
arXiv Detail & Related papers (2020-09-23T08:33:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.