Grapevine Disease Prediction Using Climate Variables from Multi-Sensor Remote Sensing Imagery via a Transformer Model
- URL: http://arxiv.org/abs/2406.07094v1
- Date: Tue, 11 Jun 2024 09:33:15 GMT
- Title: Grapevine Disease Prediction Using Climate Variables from Multi-Sensor Remote Sensing Imagery via a Transformer Model
- Authors: Weiying Zhao, Natalia Efremova,
- Abstract summary: This paper introduces a novel framework leveraging the TabPFN model to forecast blockwise grapevine diseases.
By integrating advanced machine learning techniques with detailed environmental data, our approach significantly enhances the accuracy and efficiency of disease prediction.
- Score: 0.0
- License:
- Abstract: Early detection and management of grapevine diseases are important in pursuing sustainable viticulture. This paper introduces a novel framework leveraging the TabPFN model to forecast blockwise grapevine diseases using climate variables from multi-sensor remote sensing imagery. By integrating advanced machine learning techniques with detailed environmental data, our approach significantly enhances the accuracy and efficiency of disease prediction in vineyards. The TabPFN model's experimental evaluations showcase comparable performance to traditional gradient-boosted decision trees, such as XGBoost, CatBoost, and LightGBM. The model's capability to process complex data and provide per-pixel disease-affecting probabilities enables precise, targeted interventions, contributing to more sustainable disease management practices. Our findings underscore the transformative potential of combining Transformer models with remote sensing data in precision agriculture, offering a scalable solution for improving crop health and productivity while reducing environmental impact.
Related papers
- Benchmarking and Improving Bird's Eye View Perception Robustness in Autonomous Driving [55.93813178692077]
We present RoboBEV, an extensive benchmark suite designed to evaluate the resilience of BEV algorithms.
We assess 33 state-of-the-art BEV-based perception models spanning tasks like detection, map segmentation, depth estimation, and occupancy prediction.
Our experimental results also underline the efficacy of strategies like pre-training and depth-free BEV transformations in enhancing robustness against out-of-distribution data.
arXiv Detail & Related papers (2024-05-27T17:59:39Z) - ViTaL: An Advanced Framework for Automated Plant Disease Identification
in Leaf Images Using Vision Transformers and Linear Projection For Feature
Reduction [0.0]
This paper introduces a robust framework for the automated identification of diseases in plant leaf images.
The framework incorporates several key stages to enhance disease recognition accuracy.
We propose a novel hardware design specifically tailored for scanning diseased leaves in an omnidirectional fashion.
arXiv Detail & Related papers (2024-02-27T11:32:37Z) - SugarViT -- Multi-objective Regression of UAV Images with Vision
Transformers and Deep Label Distribution Learning Demonstrated on Disease
Severity Prediction in Sugar Beet [3.2925222641796554]
This work will introduce a machine learning framework for automatized large-scale plant-specific trait annotation.
We develop an efficient Vision Transformer based model for disease severity scoring called SugarViT.
Although the model is evaluated on this special use case, it is held as generic as possible to also be applicable to various image-based classification and regression tasks.
arXiv Detail & Related papers (2023-11-06T13:01:17Z) - PlantPlotGAN: A Physics-Informed Generative Adversarial Network for
Plant Disease Prediction [2.7409168462107347]
We propose PlantPlotGAN, a physics-informed generative model capable of creating synthetic multispectral plot images with realistic vegetation indices.
The results demonstrate that the synthetic imagery generated from PlantPlotGAN outperforms state-of-the-art methods regarding the Fr'echet inception distance.
arXiv Detail & Related papers (2023-10-27T16:56:28Z) - Improving FHB Screening in Wheat Breeding Using an Efficient Transformer
Model [0.0]
Fusarium head blight is a devastating disease that causes significant economic losses annually on small grains.
Image processing techniques have been developed using supervised machine learning algorithms for the early detection of FHB.
A new Context Bridge is proposed to integrate the local representation capability of the U-Net network in the transformer model.
arXiv Detail & Related papers (2023-08-07T15:44:58Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - End-to-end deep learning for directly estimating grape yield from
ground-based imagery [53.086864957064876]
This study demonstrates the application of proximal imaging combined with deep learning for yield estimation in vineyards.
Three model architectures were tested: object detection, CNN regression, and transformer models.
The study showed the applicability of proximal imaging and deep learning for prediction of grapevine yield on a large scale.
arXiv Detail & Related papers (2022-08-04T01:34:46Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - Learning Generative Vision Transformer with Energy-Based Latent Space
for Saliency Prediction [51.80191416661064]
We propose a novel vision transformer with latent variables following an informative energy-based prior for salient object detection.
Both the vision transformer network and the energy-based prior model are jointly trained via Markov chain Monte Carlo-based maximum likelihood estimation.
With the generative vision transformer, we can easily obtain a pixel-wise uncertainty map from an image, which indicates the model confidence in predicting saliency from the image.
arXiv Detail & Related papers (2021-12-27T06:04:33Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.