論文の概要: VersiCode: Towards Version-controllable Code Generation
- arxiv url: http://arxiv.org/abs/2406.07411v1
- Date: Tue, 11 Jun 2024 16:15:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 15:05:20.312331
- Title: VersiCode: Towards Version-controllable Code Generation
- Title(参考訳): VersiCode: バージョン管理可能なコード生成を目指す
- Authors: Tongtong Wu, Weigang Wu, Xingyu Wang, Kang Xu, Suyu Ma, Bo Jiang, Ping Yang, Zhenchang Xing, Yuan-Fang Li, Gholamreza Haffari,
- Abstract要約: VersiCodeは,大規模言語モデルが特定のライブラリのバージョンに対して検証可能なコードを生成する能力を評価するために設計された,最初の包括的なデータセットである。
バージョン別コード補完(VSCC)とバージョン別コード編集(VACE)の2つの専用評価タスクを設計する。
LLMのパフォーマンスをベンチマークするために総合的な実験が行われ、これらのタスクとVersiCodeの難しさを明らかにしている。
- 参考スコア(独自算出の注目度): 58.82709231906735
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Significant research has focused on improving the performance of large language model on code-related tasks due to their practical importance. Although performance is typically evaluated using public benchmark datasets, the existing datasets do not account for the concept of \emph{version}, which is crucial in professional software development. In this paper, we introduce VersiCode, the first comprehensive dataset designed to assess the ability of large language models to generate verifiable code for specific library versions. VersiCode encompasses 300 libraries across more than 2,000 versions spanning 9 years. We design two dedicated evaluation tasks: version-specific code completion (VSCC) and version-aware code editing (VACE). Comprehensive experiments are conducted to benchmark the performance of LLMs, revealing the challenging nature of these tasks and VersiCode, that even state-of-the-art LLMs struggle to generate version-correct code. This dataset, together with the proposed tasks, sheds light on LLMs' capabilities and limitations in handling version-specific code generation, and opens up an important new area of research for further investigation. The resources can be found at https://github.com/wutong8023/VersiCode.
- Abstract(参考訳): 重要な研究は、その実践的重要性から、コード関連タスクにおける大規模言語モデルの性能向上に重点を置いている。
パフォーマンスは通常、公開ベンチマークデータセットを使用して評価されるが、既存のデータセットはプロのソフトウェア開発において不可欠である‘emph{version}’の概念を考慮していない。
本稿では,大規模な言語モデルが特定のライブラリのバージョンに対して検証可能なコードを生成する能力を評価するために設計された,最初の包括的データセットであるVersiCodeを紹介する。
VersiCodeは9年間に2000以上のバージョンにまたがる300のライブラリを含んでいる。
バージョン別コード補完(VSCC)とバージョン別コード編集(VACE)の2つの専用評価タスクを設計する。
総合的な実験によってLLMのパフォーマンスをベンチマークし、これらのタスクとVersiCodeの難しい性質を明らかにし、最先端のLLMでさえバージョン修正コードを生成するのに苦労している。
このデータセットは、提案されたタスクとともに、バージョン固有のコード生成を扱うLLMの機能と制限に光を当て、さらなる調査のために重要な研究領域を開く。
リソースはhttps://github.com/wutong8023/VersiCodeで確認できる。
関連論文リスト
- A Comprehensive Survey of AI-Driven Advancements and Techniques in Automated Program Repair and Code Generation [0.0]
最近27の論文がレビューされ、2つのグループに分けられた。
最初のグループは、意味的エラーの特定を含む、バグの検出と修復のための新しいメソッドで構成されている。
2つ目のグループはコード生成に精通しており、プログラミングとタスク固有のモデルのために微調整された汎用LLMの概要を提供している。
また、識別子認識トレーニング、命令レベルでの微調整、セマンティックコード構造の導入など、コード生成を改善する方法も提示されている。
論文 参考訳(メタデータ) (2024-11-12T06:47:54Z) - OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
コードのための大規模言語モデル(LLM)は、コード生成、推論タスク、エージェントシステムなど、さまざまな領域で必須になっている。
オープンアクセスのコード LLM はプロプライエタリなモデルの性能レベルに近づきつつあるが、高品質なコード LLM は依然として限られている。
トップクラスのコードLLMであるOpenCoderは、主要なモデルに匹敵するパフォーマンスを達成するだけでなく、研究コミュニティの"オープンクックブック"としても機能します。
論文 参考訳(メタデータ) (2024-11-07T17:47:25Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - A Survey on Large Language Models for Code Generation [9.555952109820392]
大規模言語モデル(LLM)は、様々なコード関連のタスクで顕著な進歩を遂げています。
本調査は、総合的かつ最新の文献レビューを提供することで、学界と実践的発展のギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-06-01T17:48:15Z) - Automating Patch Set Generation from Code Review Comments Using Large Language Models [2.045040820541428]
5つの人気のあるLarge Language Model(LLM)にコードコンテキストを提供します。
実世界のコードレビューコメントから提案したコード変更(パッチセット)を得る。
生成したパッチセットを人為的なパッチセットの履歴データと比較することにより、各モデルの性能を慎重に評価する。
論文 参考訳(メタデータ) (2024-04-10T02:46:08Z) - InfiBench: Evaluating the Question-Answering Capabilities of Code Large Language Models [56.723509505549536]
InfiBenchは、私たちの知識に合ったコードのための、最初の大規模フリーフォーム質問回答(QA)ベンチマークです。
慎重に選択された234の高品質なStack Overflow質問で構成されており、15のプログラミング言語にまたがっている。
InfiBench上で100以上の最新のコードLLMに対して,系統的評価を行い,新しい知見と洞察に富んだ結果を得た。
論文 参考訳(メタデータ) (2024-03-11T02:06:30Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - CodeLL: A Lifelong Learning Dataset to Support the Co-Evolution of Data
and Language Models of Code [6.491009626125319]
コード変更に焦点を当てた生涯学習データセットであるCodeLLを紹介します。
私たちのデータセットは、オープンソースソフトウェアリポジトリのリリース履歴全体にわたるコード変更を包括的にキャプチャすることを目的としています。
CodeLLは、コード変更を学ぶための生涯にわたる微調整設定において、LMの振る舞いを研究することができる。
論文 参考訳(メタデータ) (2023-12-20T01:20:24Z) - CodeT5+: Open Code Large Language Models for Code Understanding and
Generation [72.1638273937025]
大きな言語モデル (LLM) は膨大なソースコードで事前訓練されており、コードインテリジェンスにおいて顕著な進歩を遂げている。
CodeT5+は、コンポーネントモジュールを柔軟に組み合わせて、幅広い下流のコードタスクに適合させることができるコードのためのエンコーダ-デコーダLLMのファミリーである。
我々は、ゼロショット、微調整、命令調整を含む20以上のコード関連ベンチマークでCodeT5+を広範囲に評価した。
論文 参考訳(メタデータ) (2023-05-13T14:23:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。