Average-exact mixed anomalies and compatible phases
- URL: http://arxiv.org/abs/2406.07417v1
- Date: Tue, 11 Jun 2024 16:21:13 GMT
- Title: Average-exact mixed anomalies and compatible phases
- Authors: Yichen Xu, Chao-Ming Jian,
- Abstract summary: This work focuses on disordered systems with both average and exact symmetries $Atimes K$.
We argue that the mixed state representing the ensemble of disordered ground states cannot be featureless.
While disordered mixed states smoothly connected to the anomaly-compatible phases in clean limit are certainly allowed, we also found disordered phases that have no clean-limit counterparts.
- Score: 1.8323934570972102
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The quantum anomaly of a global symmetry is known to strongly constrain the allowed low-energy physics in a clean and isolated quantum system. However, the effect of quantum anomalies in disordered systems is much less understood, especially when the global symmetry is only preserved on average by the disorder. In this work, we focus on disordered systems with both average and exact symmetries $A\times K$, where the exact symmetry $K$ is respected in every disorder configuration, and the average $A$ is only preserved on average by the disorder ensemble. When there is a mixed quantum anomaly between the average and exact symmetries, we argue that the mixed state representing the ensemble of disordered ground states cannot be featureless. While disordered mixed states smoothly connected to the anomaly-compatible phases in clean limit are certainly allowed, we also found disordered phases that have no clean-limit counterparts, including the glassy states with strong-to-weak symmetry breaking, and average topological orders for certain anomalies. We construct solvable lattice models to demonstrate each of these possibilities. We also provide a field-theoretic argument to provide a criterion for whether a given average-exact mixed anomaly admits a compatible average topological order.
Related papers
- Exactly solvable models for fermionic symmetry-enriched topological phases and fermionic 't Hooft anomaly [33.49184078479579]
The interplay between symmetry and topological properties plays a very important role in modern physics.
How to realize all these fermionic SET (fSET) phases in lattice models remains to be a difficult open problem.
arXiv Detail & Related papers (2024-10-24T19:52:27Z) - Instability of steady-state mixed-state symmetry-protected topological order to strong-to-weak spontaneous symmetry breaking [14.693424479293737]
We investigate whether open quantum systems hosting mixed-state symmetry-protected topological states as steady states retain this property under symmetric perturbations.
We find that typical symmetric perturbations cause strong-to-weak spontaneous symmetry breaking at arbitrarily small perturbations, destabilize the steady-state mixed-state symmetry-protected topological order.
We construct a quantum channel which replicates the essential physics of the Lindbladian and can be efficiently simulated using only Clifford gates, Pauli measurements, and feedback.
arXiv Detail & Related papers (2024-10-16T18:00:00Z) - Non-chiral non-Bloch invariants and topological phase diagram in non-unitary quantum dynamics without chiral symmetry [26.179241616332387]
We identify the non-Bloch topological phase diagram of a one-dimensional (1D) non-Hermitian system without chiral symmetry.
We find that such topological invariants can distinguish topologically distinct gapped phases.
Our work provides a useful platform to study the interplay among topology, symmetries and the non-Hermiticity.
arXiv Detail & Related papers (2024-07-26T03:29:30Z) - Anomaly in open quantum systems and its implications on mixed-state quantum phases [6.356631694532754]
We develop a systematic approach to characterize the 't Hooft anomaly in open quantum systems.
By representing their symmetry transformation through superoperators, we incorporate them in a unified framework.
We find that anomalies of bosonic systems are classified by $Hd+2(Ktimes G,U(1))/Hd+2(G,U(1))$ in $d$ spatial dimensions.
arXiv Detail & Related papers (2024-03-21T16:34:37Z) - Anomalies of Average Symmetries: Entanglement and Open Quantum Systems [0.0]
We show that anomalous average symmetry implies degeneracy in the density matrix eigenvalues.
We discuss several applications in the contexts of many body localization, quantum channels, entanglement phase transitions and also derive new constraints on the Lindbladian evolution of open quantum systems.
arXiv Detail & Related papers (2023-12-14T16:10:49Z) - Control landscape of measurement-assisted transition probability for a
three-level quantum system with dynamical symmetry [77.34726150561087]
Quantum systems with dynamical symmetries have conserved quantities which are preserved under coherent controls.
Incoherent control can increase the maximal attainable transition probability.
We show that all critical points are global maxima, global minima, saddle points and second order traps.
arXiv Detail & Related papers (2023-07-14T16:12:21Z) - Topological Phases with Average Symmetries: the Decohered, the Disordered, and the Intrinsic [11.002608494115886]
Topological phases in mixed quantum states, originating from textitdecoherence in open quantum systems, have recently garnered significant interest.
We present a systematic classification and characterization of average symmetry-protected topological phases.
We also formulate the theory of average symmetry-enriched topological (ASET) orders in disordered bosonic systems.
arXiv Detail & Related papers (2023-05-25T18:04:22Z) - Average Symmetry-Protected Topological Phases [5.540230036673068]
We define the notion of average SPT for disordered ensembles of quantum states.
We show that if the decorated domain walls have dimension higher than $(0+1)d$, then the boundary states of such average SPT will almost certainly be long-range entangled.
Our results indicate that topological quantum phenomena associated with average symmetries can be at least as rich as those with ordinary exact symmetries.
arXiv Detail & Related papers (2022-09-06T18:00:04Z) - Noise-resilient Edge Modes on a Chain of Superconducting Qubits [103.93329374521808]
Inherent symmetry of a quantum system may protect its otherwise fragile states.
We implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $mathbbZ$ parity symmetry.
MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism.
arXiv Detail & Related papers (2022-04-24T22:34:15Z) - Simultaneous Transport Evolution for Minimax Equilibria on Measures [48.82838283786807]
Min-max optimization problems arise in several key machine learning setups, including adversarial learning and generative modeling.
In this work we focus instead in finding mixed equilibria, and consider the associated lifted problem in the space of probability measures.
By adding entropic regularization, our main result establishes global convergence towards the global equilibrium.
arXiv Detail & Related papers (2022-02-14T02:23:16Z) - Orthogonal Group Synchronization with Incomplete Measurements: Error
Bounds and Linear Convergence of the Generalized Power Method [22.901235010786287]
Group synchronization refers to estimating a collection of group elements from the noisy pairwise measurements.
In this paper, we focus on the group synchronization problem with general additive noise models under incomplete measurements.
arXiv Detail & Related papers (2021-12-13T10:57:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.