論文の概要: Partially Observed Trajectory Inference using Optimal Transport and a Dynamics Prior
- arxiv url: http://arxiv.org/abs/2406.07475v3
- Date: Wed, 26 Feb 2025 14:58:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 15:24:45.975526
- Title: Partially Observed Trajectory Inference using Optimal Transport and a Dynamics Prior
- Title(参考訳): 最適輸送とダイナミクスを用いた部分観測軌道推定
- Authors: Anming Gu, Edward Chien, Kristjan Greenewald,
- Abstract要約: 軌道推論は、時間的限界のスナップショットから集団の時間的ダイナミクスを回復しようとする。
先行研究は、観測空間に勾配駆動ドリフトを持つ微分方程式(SDE)モデルの下で行われる。
本稿では,この潜在軌道推定問題の解法としてPO-MFLアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 2.7255073299359154
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Trajectory inference seeks to recover the temporal dynamics of a population from snapshots of its (uncoupled) temporal marginals, i.e. where observed particles are not tracked over time. Prior works addressed this challenging problem under a stochastic differential equation (SDE) model with a gradient-driven drift in the observed space, introducing a minimum entropy estimator relative to the Wiener measure and a practical grid-free mean-field Langevin (MFL) algorithm using Schr\"odinger bridges. Motivated by the success of observable state space models in the traditional paired trajectory inference problem (e.g. target tracking), we extend the above framework to a class of latent SDEs in the form of observable state space models. In this setting, we use partial observations to infer trajectories in the latent space under a specified dynamics model (e.g. the constant velocity/acceleration models from target tracking). We introduce the PO-MFL algorithm to solve this latent trajectory inference problem and provide theoretical guarantees to the partially observed setting. Experiments validate the robustness of our method and the exponential convergence of the MFL dynamics, and demonstrate significant outperformance over the latent-free baseline in key scenarios.
- Abstract(参考訳): 軌道推論は、時間とともに観測された粒子が追跡されない(結合されていない)時間的限界のスナップショットから、集団の時間的ダイナミクスを回復しようとする。
先行研究は、観測空間における勾配駆動ドリフトを伴う確率微分方程式(SDE)モデルの下でこの問題に対処し、ウィナー測度に対する最小エントロピー推定器とシュル・オーディンガー橋を用いた実用的なグリッドフリー平均場ランゲイン(MFL)アルゴリズムを導入した。
従来の対軌道推定問題(例えば目標追跡)における観測可能な状態空間モデルの成功により、我々は上記のフレームワークを観測可能な状態空間モデルという形で潜在SDEのクラスに拡張する。
この設定では、特定のダイナミックスモデル(例えば、目標追跡からの定速度/加速モデル)の下で、部分的な観測を用いて、潜時空間の軌道を推定する。
我々は,この潜在軌道推定問題を解くためにPO-MFLアルゴリズムを導入し,部分的に観測された設定に対する理論的保証を提供する。
実験は,本手法のロバスト性およびMFL力学の指数収束性を検証し,キーシナリオにおける潜在自由ベースラインに対する顕著な性能を示す。
関連論文リスト
- Long-time soliton dynamics via a coarse-grained space-time method [7.743463245493229]
我々はミンコフスキー計量に基づく二重メッシュ構造を用いて粗粒化法を時空に拡張する。
我々は、ソリトンが固定された中心電荷によって閉じ込められる長寿命な境界状態、すなわち「シュウィンガー原子」を発見した。
また, 相対論的量子場理論の量子シミュレーションの可能性も示唆した。
論文 参考訳(メタデータ) (2025-04-16T17:51:51Z) - EMoTive: Event-guided Trajectory Modeling for 3D Motion Estimation [59.33052312107478]
イベントカメラは、シーン変化に対する連続的適応ピクセルレベル応答による3次元モーション推定の可能性を提供する。
本稿では,イベント誘導パラメトリック曲線を用いた一様軌道をモデル化するイベントベースフレームワークであるEMoveについて述べる。
動作表現には,事象誘導下での空間的特徴と時間的特徴を融合する密度認識適応機構を導入する。
最終3次元運動推定は、パラメトリック軌道、流れ、深度運動場の多時間サンプリングによって達成される。
論文 参考訳(メタデータ) (2025-03-14T13:15:54Z) - Stochastic Reconstruction of Gappy Lagrangian Turbulent Signals by Conditional Diffusion Models [1.7810134788247751]
本研究では, 乱流によって受動的に対流する小物体の軌道に沿って, 空間・速度の欠落を再現する手法を提案する。
近年提案されているデータ駆動機械学習技術である条件付き生成拡散モデルを利用する。
論文 参考訳(メタデータ) (2024-10-31T14:26:10Z) - TPP-Gaze: Modelling Gaze Dynamics in Space and Time with Neural Temporal Point Processes [63.95928298690001]
ニューラル・テンポラル・ポイント・プロセス(TPP)に基づく新規かつ原則化されたスキャンパスダイナミクスのアプローチであるTPP-Gazeを提案する。
提案手法は,最先端手法と比較して総合的に優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-30T19:22:38Z) - Symmetric Mean-field Langevin Dynamics for Distributional Minimax
Problems [78.96969465641024]
平均場ランゲヴィンのダイナミクスを、対称で証明可能な収束した更新で、初めて確率分布に対する最小の最適化に拡張する。
また,時間と粒子の離散化機構について検討し,カオス結果の新たな均一時間伝播を証明した。
論文 参考訳(メタデータ) (2023-12-02T13:01:29Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
拡散モデル(DM)は、連続入力のための最先端の生成モデルを表す。
我々はtextbfphase space dynamics に基づく新しい生成モデリングフレームワークを提案する。
我々のフレームワークは、動的伝播の初期段階において、現実的なデータポイントを生成する能力を示す。
論文 参考訳(メタデータ) (2023-10-11T18:38:28Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
軌道予測は、観測されたシーケンスから実体運動や人間の行動を理解する上で重要な作業である。
現在の方法では、観測されたシーケンスが完了したと仮定し、欠落した値の可能性を無視する。
本稿では,グラフに基づく条件変動リカレントニューラルネットワーク (GC-VRNN) の統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T14:27:27Z) - Interacting Particle Langevin Algorithm for Maximum Marginal Likelihood
Estimation [2.53740603524637]
我々は,最大限界推定法を実装するための相互作用粒子系のクラスを開発する。
特に、この拡散の定常測度のパラメータ境界がギブス測度の形式であることを示す。
特定の再スケーリングを用いて、このシステムの幾何学的エルゴディディティを証明し、離散化誤差を限定する。
時間的に一様で、粒子の数で増加しない方法で。
論文 参考訳(メタデータ) (2023-03-23T16:50:08Z) - Modeling the space-time correlation of pulsed twin beams [68.8204255655161]
パラメトリックダウンコンバージョンによって生成される絡み合ったツインビームは、画像指向アプリケーションで好まれるソースである。
本研究では,時間消費数値シミュレーションと非現実的な平面波ポンプ理論のギャップを埋めることを目的とした半解析モデルを提案する。
論文 参考訳(メタデータ) (2023-01-18T11:29:49Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
最適輸送流(MIOFlow)を補間するマニフォールド補間法を提案する。
MIOFlowは、散発的なタイムポイントで撮影された静的スナップショットサンプルから、連続的な人口動態を学習する。
本手法は, 胚体分化および急性骨髄性白血病の治療から得られたscRNA-seqデータとともに, 分岐とマージによるシミュレーションデータについて検討した。
論文 参考訳(メタデータ) (2022-06-29T22:19:03Z) - Trajectory Inference via Mean-field Langevin in Path Space [0.17205106391379024]
軌道推論は、時間的限界のスナップショットから集団のダイナミクスを回復することを目的としている。
経路空間におけるウィナー測度に対するミンエントロピー推定器は、Lavenantらによって導入された。
論文 参考訳(メタデータ) (2022-05-14T23:13:00Z) - Bootstrap Motion Forecasting With Self-Consistent Constraints [52.88100002373369]
自己整合性制約を用いた動き予測をブートストラップする新しい枠組みを提案する。
運動予測タスクは、過去の空間的・時間的情報を組み込むことで、車両の将来の軌跡を予測することを目的としている。
提案手法は,既存手法の予測性能を常に向上することを示す。
論文 参考訳(メタデータ) (2022-04-12T14:59:48Z) - Bayesian Learning via Neural Schr\"odinger-F\"ollmer Flows [3.07869141026886]
我々は、勾配ランゲヴィン力学(SGLD)のような一般的な定常法に代わる有限時間制御を提唱する。
我々は、このフレームワークの既存の理論的保証について議論し、SDEモデルにおける既存のVIルーチンとの接続を確立する。
論文 参考訳(メタデータ) (2021-11-20T03:51:18Z) - The Limiting Dynamics of SGD: Modified Loss, Phase Space Oscillations,
and Anomalous Diffusion [29.489737359897312]
勾配降下法(SGD)を訓練した深部ニューラルネットワークの限界ダイナミクスについて検討する。
これらのダイナミクスを駆動する重要な要素は、本来のトレーニング損失ではなく、位相空間の振動を引き起こす速度と確率電流を暗黙的に規則化する修正損失の組み合わせであることを示す。
論文 参考訳(メタデータ) (2021-07-19T20:18:57Z) - Fractional Underdamped Langevin Dynamics: Retargeting SGD with Momentum
under Heavy-Tailed Gradient Noise [39.9241638707715]
FULDは, 深層学習における役割において, 自然的, エレガントな手法と類似性があることが示唆された。
論文 参考訳(メタデータ) (2020-02-13T18:04:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。