論文の概要: Efficient Parallel Multi-Hop Reasoning: A Scalable Approach for Knowledge Graph Analysis
- arxiv url: http://arxiv.org/abs/2406.07727v1
- Date: Tue, 11 Jun 2024 21:12:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 21:06:16.970836
- Title: Efficient Parallel Multi-Hop Reasoning: A Scalable Approach for Knowledge Graph Analysis
- Title(参考訳): 効率的な並列マルチホップ推論:知識グラフ解析のためのスケーラブルなアプローチ
- Authors: Jesmin Jahan Tithi, Fabio Checconi, Fabrizio Petrini,
- Abstract要約: マルチホップ推論(MHR)は様々な応用において重要な機能である。
本稿では,大規模グラフ上での時間効率の最適化に焦点をあてる。
ドメイン固有の学習埋め込みを利用する新しい並列アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-hop reasoning (MHR) is a process in artificial intelligence and natural language processing where a system needs to make multiple inferential steps to arrive at a conclusion or answer. In the context of knowledge graphs or databases, it involves traversing multiple linked entities and relationships to understand complex queries or perform tasks requiring a deeper understanding. Multi-hop reasoning is a critical function in various applications, including question answering, knowledge base completion, and link prediction. It has garnered significant interest in artificial intelligence, machine learning, and graph analytics. This paper focuses on optimizing MHR for time efficiency on large-scale graphs, diverging from the traditional emphasis on accuracy which is an orthogonal goal. We introduce a novel parallel algorithm that harnesses domain-specific learned embeddings to efficiently identify the top K paths between vertices in a knowledge graph to find the best answers to a three-hop query. Our contributions are: (1) We present a new parallel algorithm to enhance MHR performance, scalability and efficiency. (2) We demonstrate the algorithm's superior performance on leading-edge Intel and AMD architectures through empirical results. We showcase the algorithm's practicality through a case study on identifying academic affiliations of potential Turing Award laureates in Deep Learning, highlighting its capability to handle intricate entity relationships. This demonstrates the potential of our approach to enabling high-performance MHR, useful to navigate the growing complexity of modern knowledge graphs.
- Abstract(参考訳): マルチホップ推論(MHR、Multi-hop reasoning)は、人工知能と自然言語処理におけるプロセスであり、システムは結論または答えに到達するために複数の推論ステップを行う必要がある。
知識グラフやデータベースのコンテキストでは、複雑なクエリを理解したり、より深い理解を必要とするタスクを実行するために、複数のリンクされたエンティティや関係をトラバースする。
マルチホップ推論は、質問応答、知識ベース補完、リンク予測など、様々なアプリケーションにおいて重要な機能である。
人工知能、機械学習、グラフ分析に多大な関心を寄せている。
本稿では,大規模グラフ上での時間効率の最適化に焦点をあて,直交目標である精度の従来の重視から逸脱する。
本稿では,知識グラフ内の頂点間の上位K経路を効率よく識別し,3つのホップクエリの最適解を求めるために,ドメイン固有の学習埋め込みを利用する並列アルゴリズムを提案する。
1) MHRの性能, スケーラビリティ, 効率を向上させるための新しい並列アルゴリズムを提案する。
2) 先進的なIntelおよびAMDアーキテクチャにおけるアルゴリズムの優れた性能を実証実験により示す。
本稿では,深層学習におけるチューリング賞の学術的関連性を特定するためのケーススタディを通じて,アルゴリズムの実践性を実証し,複雑な実体関係を扱う能力を強調した。
これは、現代の知識グラフの複雑さの増大をナビゲートするのに有用な、高性能なMHRを実現するための我々のアプローチの可能性を示すものである。
関連論文リスト
- Can Graph Learning Improve Planning in LLM-based Agents? [61.47027387839096]
言語エージェントにおけるタスクプランニングは、大規模言語モデル(LLM)の開発とともに重要な研究トピックとして浮上している。
本稿では,課題計画のためのグラフ学習に基づく手法について検討する。
我々のグラフ学習への関心は、注意のバイアスと自己回帰的損失が、グラフ上の意思決定を効果的にナビゲートするLLMの能力を妨げているという理論的な発見に起因している。
論文 参考訳(メタデータ) (2024-05-29T14:26:24Z) - Graph Reinforcement Learning for Combinatorial Optimization: A Survey and Unifying Perspective [6.199818486385127]
我々は、強化学習の試行錯誤パラダイムを用いて、より良い意思決定戦略を発見する。
この研究は、パフォーマンスアルゴリズムが典型的に知られていない非標準グラフ問題に焦点を当てている。
論文 参考訳(メタデータ) (2024-04-09T17:45:25Z) - ULTRA-DP: Unifying Graph Pre-training with Multi-task Graph Dual Prompt [67.8934749027315]
本稿では,タスク識別と位置識別をGNNに注入する,グラフハイブリッド事前学習のための統合フレームワークを提案する。
また,約$k$-nearest隣人のグループに基づいた,新しい事前学習パラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-23T12:11:13Z) - Tree-of-Mixed-Thought: Combining Fast and Slow Thinking for Multi-hop
Visual Reasoning [16.495754104540605]
大規模言語モデル(LLM)は、視覚的推論のような複雑な推論タスクのためのコードライクな計画を生成することができる。
ワンストップ推論 (fast) とツリー・オブ・シント (slow) を統合した階層型計画探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-18T16:21:40Z) - Offline Reinforcement Learning with Differentiable Function
Approximation is Provably Efficient [65.08966446962845]
歴史的データを用いて意思決定戦略を最適化することを目的としたオフライン強化学習は、現実の応用に広く適用されている。
微分関数クラス近似(DFA)を用いたオフライン強化学習の検討から一歩踏み出した。
最も重要なことは、悲観的な適合Q-ラーニングアルゴリズムを解析することにより、オフライン微分関数近似が有効であることを示すことである。
論文 参考訳(メタデータ) (2022-10-03T07:59:42Z) - Deep Algorithmic Question Answering: Towards a Compositionally Hybrid AI
for Algorithmic Reasoning [0.0]
問題の解答におけるアルゴリズム推論の課題は、AIに対する"システム"アプローチに効果的に取り組むことができる、と我々は主張する。
本稿では,QA,Deep Algorithmic Question Answeringのためのアルゴリズム推論手法を提案する。
論文 参考訳(メタデータ) (2021-09-16T14:28:18Z) - Dynamic Semantic Graph Construction and Reasoning for Explainable
Multi-hop Science Question Answering [50.546622625151926]
マルチホップQAのための説明可能性を得ながら,より有効な事実を活用できる新しいフレームワークを提案する。
a) tt AMR-SG,(a) tt AMR-SG,(a) tt AMR-SG,(a) tt AMR-SG,(c) グラフ畳み込みネットワーク(GCN)を利用した事実レベルの関係モデリング,(c) 推論過程の導出を行う。
論文 参考訳(メタデータ) (2021-05-25T09:14:55Z) - Deep Reinforcement Learning of Graph Matching [63.469961545293756]
ノードとペアの制約下でのグラフマッチング(GM)は、最適化からコンピュータビジョンまでの領域におけるビルディングブロックである。
GMのための強化学習ソルバを提案する。
rgmはペアワイズグラフ間のノード対応を求める。
本手法は,フロントエンドの特徴抽出と親和性関数学習に焦点をあてるという意味において,従来のディープグラフマッチングモデルと異なる。
論文 参考訳(メタデータ) (2020-12-16T13:48:48Z) - SEEK: Segmented Embedding of Knowledge Graphs [77.5307592941209]
本稿では,モデル複雑性を増大させることなく,高い競争力を持つ関係表現性を実現する軽量なモデリングフレームワークを提案する。
本フレームワークは,評価関数の設計に重点を置いており,1)十分な特徴相互作用の促進,2)関係の対称性と反対称性の両特性の保存,という2つの重要な特徴を強調している。
論文 参考訳(メタデータ) (2020-05-02T15:15:50Z) - Scalable Multi-Hop Relational Reasoning for Knowledge-Aware Question
Answering [35.40919477319811]
本稿では,事前学習された言語モデルにマルチホップ関係推論モジュールを組み込む新しい知識認識手法を提案する。
外部知識グラフから抽出したサブグラフに対して、マルチホップ、マルチリレーショナル推論を行う。
パスベースの推論手法とグラフニューラルネットワークを統合して、より優れた解釈性とスケーラビリティを実現する。
論文 参考訳(メタデータ) (2020-05-01T23:10:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。