論文の概要: Banal Deception Human-AI Ecosystems: A Study of People's Perceptions of LLM-generated Deceptive Behaviour
- arxiv url: http://arxiv.org/abs/2406.08386v1
- Date: Wed, 12 Jun 2024 16:36:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 15:57:07.886762
- Title: Banal Deception Human-AI Ecosystems: A Study of People's Perceptions of LLM-generated Deceptive Behaviour
- Title(参考訳): バルナール認知 : LLMが生み出す認知行動に対する人々の認識に関する研究
- Authors: Xiao Zhan, Yifan Xu, Noura Abdi, Joe Collenette, Ruba Abu-Salma, Stefan Sarkadi,
- Abstract要約: 大規模言語モデル(LLM)は、ユーザに誤った、不正確な、あるいは誤解を招く情報を提供する。
本研究は,ChatGPTが生成する騙し行動に対する人々の認識について検討する。
- 参考スコア(独自算出の注目度): 11.285775969393566
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) can provide users with false, inaccurate, or misleading information, and we consider the output of this type of information as what Natale (2021) calls `banal' deceptive behaviour. Here, we investigate peoples' perceptions of ChatGPT-generated deceptive behaviour and how this affects peoples' own behaviour and trust. To do this, we use a mixed-methods approach comprising of (i) an online survey with 220 participants and (ii) semi-structured interviews with 12 participants. Our results show that (i) the most common types of deceptive information encountered were over-simplifications and outdated information; (ii) humans' perceptions of trust and `worthiness' of talking to ChatGPT are impacted by `banal' deceptive behaviour; (iii) the perceived responsibility for deception is influenced by education level and the frequency of deceptive information; and (iv) users become more cautious after encountering deceptive information, but they come to trust the technology more when they identify advantages of using it. Our findings contribute to the understanding of human-AI interaction dynamics in the context of \textit{Deceptive AI Ecosystems}, and highlight the importance of user-centric approaches to mitigating the potential harms of deceptive AI technologies.
- Abstract(参考訳): 大規模言語モデル(LLM)は,ユーザに対して誤った,不正確な,あるいは誤解を招く情報を提供することができる。
本稿では,ChatGPTが生み出す騙し行動に対する人々の認識と,それが人々の行動や信頼にどのように影響するかを検討する。
これを実現するために、私たちは混合メソッドアプローチを使用します。
(i)参加者220名によるオンライン調査
(II)12名を対象に半構造化面接を行った。
私たちの結果は
(i)最も一般的な偽情報の種類は、過度に単純化され、時代遅れな情報である。
(二)ChatGPTと会話する人間の信頼感と「健康」は「バーナール」の騙し行動に影響される。
三 虚偽の認識責任は、教育水準及び虚偽情報の頻度に左右される。
(4)偽情報に遭遇すると、利用者はより慎重になるが、利用の利点を見極めれば、より信頼されるようになる。
本研究は,「textit{Deceptive AI Ecosystems}」の文脈における人間-AIインタラクションのダイナミクスの理解に寄与し,認知型AI技術の潜在的な害を軽減するためのユーザ中心のアプローチの重要性を強調した。
関連論文リスト
- Trust No Bot: Discovering Personal Disclosures in Human-LLM Conversations in the Wild [40.57348900292574]
人間とチャットボットのインタラクションにおける個人の開示を測定することで、ユーザのAIリテラシーをよりよく理解することができる。
我々は、実際のユーザが商用のGPTモデルに対して行った個人情報を詳細に分析する。
論文 参考訳(メタデータ) (2024-07-16T07:05:31Z) - Modeling User Preferences via Brain-Computer Interfacing [54.3727087164445]
我々はBrain-Computer Interface技術を用いてユーザの好みを推測し、その注意力は視覚的コンテンツと感情的体験との関連性に相関する。
我々はこれらを,情報検索,生成モデルのパーソナライズされたステアリング,感情経験のクラウドソーシング人口推定など,関連するアプリケーションにリンクする。
論文 参考訳(メタデータ) (2024-05-15T20:41:46Z) - Interrogating AI: Characterizing Emergent Playful Interactions with ChatGPT [10.907980864371213]
AIシステムとの遊び的なインタラクションは、ユーザがテクノロジーを理解するための重要な方法として自然に現れました。
我々は、新興AI技術のユーザであるChatGPTが提示する遊び心のあるインタラクションを調査することによって、このギャップを狙う。
また,ChatGPTサブレディット上での372件のユーザ生成記事のテーマ分析により,ユーザ談話の半数以上が遊び心のあるインタラクションを中心に展開していることがわかった。
論文 参考訳(メタデータ) (2024-01-16T14:44:13Z) - Improving the Robustness of Knowledge-Grounded Dialogue via Contrastive
Learning [71.8876256714229]
本稿では,知識ベース対話システムの堅牢性向上を目的とした,エンティティベースのコントラスト学習フレームワークを提案する。
提案手法は,自動評価スコアの点から,新しい最先端性能を実現する。
論文 参考訳(メタデータ) (2024-01-09T05:16:52Z) - How much informative is your XAI? A decision-making assessment task to
objectively measure the goodness of explanations [53.01494092422942]
XAIに対する個人化アプローチとユーザ中心アプローチの数は、近年急速に増加している。
ユーザ中心のXAIアプローチがユーザとシステム間のインタラクションに肯定的な影響を与えることが明らかとなった。
我々は,XAIシステムの良否を客観的かつ定量的に評価するための評価課題を提案する。
論文 参考訳(メタデータ) (2023-12-07T15:49:39Z) - Do You Trust ChatGPT? -- Perceived Credibility of Human and AI-Generated
Content [0.8602553195689513]
本稿では,人文作家が生み出すコンテンツの信頼性と,大規模言語モデルが生み出すコンテンツの信頼性について考察する。
驚いたことに、私たちの結果は、ユーザインターフェースのプレゼンテーションに関わらず、参加者は同様の信頼性のレベルを考慮しがちであることを示した。
参加者はまた、人間とAIが生成したコンテンツの間の能力と信頼性に関する異なる認識を報告していない。
論文 参考訳(メタデータ) (2023-09-05T18:29:29Z) - Adaptive cognitive fit: Artificial intelligence augmented management of
information facets and representations [62.997667081978825]
ビッグデータ技術と人工知能(AI)応用の爆発的な成長は、情報ファセットの普及に繋がった。
等角性や正確性などの情報フェートは、情報に対する人間の認識を支配的かつ著しく左右する。
認知の限界を克服するために情報表現を適応できる人工知能技術が必要であることを示唆する。
論文 参考訳(メタデータ) (2022-04-25T02:47:25Z) - The Effects of Interactive AI Design on User Behavior: An Eye-tracking
Study of Fact-checking COVID-19 Claims [12.00747200817161]
我々は,AIを用いたファクトチェックシステムの相互作用がユーザインタラクションに与える影響について,実験室による眼球追跡調査を行った。
その結果、AIシステムの予測パラメータを対話的に操作することの存在は、ユーザの生活時間や、AOIの眼球修正に影響を及ぼすが、精神的な作業負荷には影響しないことがわかった。
論文 参考訳(メタデータ) (2022-02-17T21:08:57Z) - Characterizing User Susceptibility to COVID-19 Misinformation on Twitter [40.0762273487125]
本研究は、パンデミックのオンライン誤報に弱い人口を構成する人々への回答を試みる。
我々は、ソーシャルボットから、新型コロナウイルス関連の誤情報に関するさまざまなレベルのエンゲージメントを持つ人間まで、さまざまなタイプのユーザーを区別する。
次に、新型コロナウイルスの誤情報に対する感受性と相関する、ユーザのオンライン機能と状況予測を識別する。
論文 参考訳(メタデータ) (2021-09-20T13:31:15Z) - Towards Unbiased Visual Emotion Recognition via Causal Intervention [63.74095927462]
本稿では,データセットバイアスによる負の効果を軽減するために,新しい感情認識ネットワーク(IERN)を提案する。
IERNの有効性を検証する一連の設計されたテストと、3つの感情ベンチマークの実験は、IERNが他の最先端のアプローチよりも優れていることを示した。
論文 参考訳(メタデータ) (2021-07-26T10:40:59Z) - Machine Learning Explanations to Prevent Overtrust in Fake News
Detection [64.46876057393703]
本研究では、ニュースレビュープラットフォームに組み込んだ説明可能なAIアシスタントが、フェイクニュースの拡散と戦う効果について検討する。
我々は、ニュースレビューと共有インターフェースを設計し、ニュース記事のデータセットを作成し、4つの解釈可能なフェイクニュース検出アルゴリズムを訓練する。
説明可能なAIシステムについてより深く理解するために、説明プロセスにおけるユーザエンゲージメント、メンタルモデル、信頼、パフォーマンス対策の相互作用について議論する。
論文 参考訳(メタデータ) (2020-07-24T05:42:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。