論文の概要: Classic GNNs are Strong Baselines: Reassessing GNNs for Node Classification
- arxiv url: http://arxiv.org/abs/2406.08993v1
- Date: Thu, 13 Jun 2024 10:53:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 18:24:52.076358
- Title: Classic GNNs are Strong Baselines: Reassessing GNNs for Node Classification
- Title(参考訳): 古典的なGNNは強力なベースライン:ノード分類のためのGNNの再評価
- Authors: Yuankai Luo, Lei Shi, Xiao-Ming Wu,
- Abstract要約: グラフトランスフォーマー(GT)は、従来のグラフニューラルネットワーク(GNN)の代替として人気がある。
本稿では,GTに対する3つの古典的GNNモデル(GCN, GAT, GraphSAGE)の性能を再評価する。
- 参考スコア(独自算出の注目度): 7.14327815822376
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Transformers (GTs) have recently emerged as popular alternatives to traditional message-passing Graph Neural Networks (GNNs), due to their theoretically superior expressiveness and impressive performance reported on standard node classification benchmarks, often significantly outperforming GNNs. In this paper, we conduct a thorough empirical analysis to reevaluate the performance of three classic GNN models (GCN, GAT, and GraphSAGE) against GTs. Our findings suggest that the previously reported superiority of GTs may have been overstated due to suboptimal hyperparameter configurations in GNNs. Remarkably, with slight hyperparameter tuning, these classic GNN models achieve state-of-the-art performance, matching or even exceeding that of recent GTs across 17 out of the 18 diverse datasets examined. Additionally, we conduct detailed ablation studies to investigate the influence of various GNN configurations, such as normalization, dropout, residual connections, network depth, and jumping knowledge mode, on node classification performance. Our study aims to promote a higher standard of empirical rigor in the field of graph machine learning, encouraging more accurate comparisons and evaluations of model capabilities.
- Abstract(参考訳): グラフトランスフォーマー(GT)は、理論上優れた表現力と標準ノード分類ベンチマークで報告された印象的なパフォーマンスのため、従来のメッセージパスグラフニューラルネットワーク(GNN)の代替として最近人気が高まっている。
本稿では,GTに対する3つの古典的GNNモデル(GCN, GAT, GraphSAGE)の性能を再評価するために,徹底的な実験分析を行う。
以上の結果から,GNNの極小パラメータ設定により,GTsの優位性が過大評価された可能性が示唆された。
注目すべきは、わずかなハイパーパラメータチューニングによって、これらの古典的なGNNモデルは、調査された18の多様なデータセットのうち17のGTのマッチングや、さらにはそれを超える、最先端のパフォーマンスを達成することである。
さらに,ノード分類性能に対する正規化,ドロップアウト,残差接続,ネットワーク深さ,ジャンプナレッジモードなどのGNN構成の影響を詳細に検討する。
本研究は,グラフ機械学習分野における経験的厳密性の向上をめざし,モデル能力のより正確な比較と評価を促進することを目的とする。
関連論文リスト
- PROXI: Challenging the GNNs for Link Prediction [3.8233569758620063]
本稿では,グラフと属性空間の両方におけるノードペアの近接情報を活用するPROXIを紹介する。
標準機械学習(ML)モデルは競争力があり、最先端のGNNモデルよりも優れています。
ProXIによる従来のGNNの拡張はリンク予測性能を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2024-10-02T17:57:38Z) - A Manifold Perspective on the Statistical Generalization of Graph Neural Networks [84.01980526069075]
我々は、スペクトル領域の多様体からサンプリングされたグラフ上のGNNの統計的一般化理論を確立するために多様体の視点を取る。
我々はGNNの一般化境界が対数スケールのグラフのサイズとともに線形に減少し、フィルタ関数のスペクトル連続定数とともに線形的に増加することを証明した。
論文 参考訳(メタデータ) (2024-06-07T19:25:02Z) - GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
本稿では,ラベル付きおよび観測されたグラフに基づいて学習した特定のGNNモデルの性能を評価することを目的とした,新しい問題であるGNNモデル評価について検討する。
本稿では,(1) DiscGraph セット構築と(2) GNNEvaluator トレーニングと推論を含む2段階の GNN モデル評価フレームワークを提案する。
DiscGraphセットからの効果的なトレーニング監督の下で、GNNEvaluatorは、評価対象であるGNNモデルのノード分類精度を正確に推定することを学ぶ。
論文 参考訳(メタデータ) (2023-10-23T05:51:59Z) - How Expressive are Graph Neural Networks in Recommendation? [17.31401354442106]
グラフニューラルネットワーク(GNN)は、レコメンデーションを含むさまざまなグラフ学習タスクにおいて、優れたパフォーマンスを示している。
近年、GNNの表現性を調査し、メッセージパッシングGNNがWeisfeiler-Lehmanテストと同じくらい強力であることを実証している。
本稿では,GNNがノード間の構造的距離を捉える能力を評価するために,位相的近接度尺度を提案する。
論文 参考訳(メタデータ) (2023-08-22T02:17:34Z) - Graph Neural Networks are Inherently Good Generalizers: Insights by
Bridging GNNs and MLPs [71.93227401463199]
本稿では、P(ropagational)MLPと呼ばれる中間モデルクラスを導入することにより、GNNの性能向上を本質的な能力に向ける。
PMLPは、トレーニングにおいてはるかに効率的でありながら、GNNと同等(あるいはそれ以上)に動作することを観察する。
論文 参考訳(メタデータ) (2022-12-18T08:17:32Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
グラフニューラルネットワーク(GNN)は、グラフ機械学習における有望なパフォーマンスについて、広範な研究の注目を集めている。
GCNやGPRGNNのような既存のアプローチは、テストグラフ上のホモフィリな変化に直面しても堅牢ではない。
偶数多項式グラフフィルタに対応するスペクトルGNNであるEvenNetを提案する。
論文 参考訳(メタデータ) (2022-05-27T10:48:14Z) - Theoretically Improving Graph Neural Networks via Anonymous Walk Graph
Kernels [25.736529232578178]
グラフニューラルネットワーク(GNN)は、グラフマイニングで大きな成功を収めました。
一般的なGNNとしてMPGNNは、多くのグラフのサブ構造を識別、検出、カウントできないことが理論的に示されている。
理論的にはグラフ構造を区別する能力の強いGNNモデルであるGSKNを提案する。
論文 参考訳(メタデータ) (2021-04-07T08:50:34Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
グラフニューラルネットワーク(GNN)のロバスト性および一般化性能を向上させるために,パラメータ化トポロジカルデノイングネットワークであるPTDNetを提案する。
PTDNetは、パラメータ化されたネットワークでスパーシファイドグラフ内のエッジ数をペナル化することで、タスク非関連エッジを創出する。
PTDNetはGNNの性能を著しく向上させ,さらにノイズの多いデータセットでは性能が向上することを示す。
論文 参考訳(メタデータ) (2020-11-13T18:53:21Z) - The Surprising Power of Graph Neural Networks with Random Node
Initialization [54.4101931234922]
グラフニューラルネットワーク(GNN)は、関係データ上での表現学習に有効なモデルである。
標準 GNN はその表現力に制限があり、Weisfeiler-Leman グラフ同型(英語版)の能力以外の区別はできない。
本研究では,ランダムノード(RNI)を用いたGNNの表現力の解析を行う。
我々はこれらのモデルが普遍的であることを証明し、GNNが高次特性の計算に頼らない最初の結果である。
論文 参考訳(メタデータ) (2020-10-02T19:53:05Z) - Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs [20.197085398581397]
グラフニューラルネットワーク(GNN)は最近、グラフベースのタスクにおける優れたパフォーマンスのために、多くの注目を集めている。
本稿では,既存のGNNモデルの出力を用いて,入力データの品質を向上させる自己強化型GNN(SEG)を提案する。
SEGは、GCN、GAT、SGCといったよく知られたGNNモデルのさまざまなデータセットのパフォーマンスを一貫して改善する。
論文 参考訳(メタデータ) (2020-02-18T12:27:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。