論文の概要: Towards AI Lesion Tracking in PET/CT Imaging: A Siamese-based CNN Pipeline applied on PSMA PET/CT Scans
- arxiv url: http://arxiv.org/abs/2406.09327v2
- Date: Thu, 27 Jun 2024 08:09:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-28 18:47:10.178661
- Title: Towards AI Lesion Tracking in PET/CT Imaging: A Siamese-based CNN Pipeline applied on PSMA PET/CT Scans
- Title(参考訳): PET/CT画像におけるAI損傷追跡に向けて:PSMA PET/CTスキャンに応用したシームズベースのCNNパイプライン
- Authors: Stefan P. Hein, Manuel Schultheiss, Andrei Gafita, Raphael Zaum, Farid Yagubbayli, Robert Tauber, Isabel Rauscher, Matthias Eiber, Franz Pfeiffer, Wolfgang A. Weber,
- Abstract要約: 本研究はPET/CTスキャン間の病変追跡のためのSamese CNNアプローチを導入する。
本アルゴリズムは適切な病変のパッチを抽出し,対応する病変または非対応病変として病変のパッチペアを分類する訓練を施したシームズCNNに転送する。
異なる入力パッチタイプと2Dおよび3DのSiameseネットワークで実験が行われた。
- 参考スコア(独自算出の注目度): 2.3432822395081807
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Assessing tumor response to systemic therapies is one of the main applications of PET/CT. Routinely, only a small subset of index lesions out of multiple lesions is analyzed. However, this operator dependent selection may bias the results due to possible significant inter-metastatic heterogeneity of response to therapy. Automated, AI based approaches for lesion tracking hold promise in enabling the analysis of many more lesions and thus providing a better assessment of tumor response. This work introduces a Siamese CNN approach for lesion tracking between PET/CT scans. Our approach is applied on the laborious task of tracking a high number of bone lesions in full-body baseline and follow-up [68Ga]Ga- or [18F]F-PSMA PET/CT scans after two cycles of [177Lu]Lu-PSMA therapy of metastatic castration resistant prostate cancer patients. Data preparation includes lesion segmentation and affine registration. Our algorithm extracts suitable lesion patches and forwards them into a Siamese CNN trained to classify the lesion patch pairs as corresponding or non-corresponding lesions. Experiments have been performed with different input patch types and a Siamese network in 2D and 3D. The CNN model successfully learned to classify lesion assignments, reaching a lesion tracking accuracy of 83 % in its best configuration with an AUC = 0.91. For remaining lesions the pipeline accomplished a re-identification rate of 89 %. We proved that a CNN may facilitate the tracking of multiple lesions in PSMA PET/CT scans. Future clinical studies are necessary if this improves the prediction of the outcome of therapies.
- Abstract(参考訳): 全身療法による腫瘍反応の評価はPET/CTの主な応用の1つである。
定期的に、複数の病変のうち、インデックス病変の小さなサブセットのみが分析される。
しかし、この操作者による選択は、治療に対する反応の有意な転移間不均一性により、結果をバイアスする可能性がある。
自動AIベースの病変追跡アプローチは、より多くの病変の分析を可能にし、腫瘍反応のより良い評価を可能にすることを約束する。
本研究はPET/CTスキャン間の病変追跡のためのSamese CNNアプローチを導入する。
転移性前立腺癌に対する[177Lu]Lu-PSMA療法の2サイクル後の全身ベースラインおよび[68Ga]Ga-または[18F]F-PSMA PET/CTスキャンにおける骨病変の追跡について検討した。
データ準備には病変のセグメンテーションとアフィンの登録が含まれる。
本アルゴリズムは適切な病変のパッチを抽出し,対応する病変または非対応病変として病変のパッチペアを分類する訓練を施したシームズCNNに転送する。
異なる入力パッチタイプと2Dおよび3DのSiameseネットワークで実験が行われた。
CNNモデルは病変の特定に成功し、AUC=0.91の最良の構成で病変追跡精度は83 %に達した。
残存病変では, 再同定率は89 %であった。
我々は,PSMA PET/CTスキャンにおいて,CNNが多発病変の追跡を容易にすることを証明した。
治療結果の予測を改善するためには,今後の臨床研究が必要である。
関連論文リスト
- Autopet III challenge: Incorporating anatomical knowledge into nnUNet for lesion segmentation in PET/CT [4.376648893167674]
AutoPET III ChallengeはPET/CT画像における腫瘍病変の自動切除の進歩に焦点を当てている。
我々は,PETスキャンの最大強度投影に基づいて,与えられたPET/CTのトレーサを識別する分類器を開発した。
我々の最終提出書は、公開可能なFDGおよびPSMAデータセットに対して76.90%と61.33%のクロスバリデーションDiceスコアを達成している。
論文 参考訳(メタデータ) (2024-09-18T17:16:57Z) - From FDG to PSMA: A Hitchhiker's Guide to Multitracer, Multicenter Lesion Segmentation in PET/CT Imaging [0.9384264274298444]
本稿では,ResEncL アーキテクチャを用いた nnU-Net フレームワークを用いたマルチトラス,マルチセンタの一般化を目的とした AutoPET III チャレンジの解決策を提案する。
主なテクニックは、CT、MR、PETデータセット間での誤調整データ拡張とマルチモーダル事前トレーニングである。
Diceスコアが57.61となったデフォルトのnnU-Netと比較して、Diceスコアが68.40であり、偽陽性(FPvol: 7.82)と偽陰性(FNvol: 10.35)が減少している。
論文 参考訳(メタデータ) (2024-09-14T16:39:17Z) - Segmentation of Prostate Tumour Volumes from PET Images is a Different Ball Game [6.038532253968018]
既存の方法では、腫瘍輪郭のマニュアルアノテーション中に医師が適用した強度に基づくスケーリングを正確に考慮することができない。
我々は、新しいカスタム・フィーチャー・クリッピング・正規化手法を実装した。
この結果から, PETスキャンを新規なクリッピング技術で前処理した場合, U-Netモデルの方が優れた性能が得られることがわかった。
論文 参考訳(メタデータ) (2024-07-15T08:48:17Z) - Weakly-Supervised Detection of Bone Lesions in CT [48.34559062736031]
骨格領域は乳腺と前立腺に転移性癌が拡がる一般的な部位の1つである。
代用セグメンテーションタスクによりCTボリュームの骨病変を検出するパイプラインを開発した。
不完全および部分的トレーニングデータを用いたにもかかわらず,CTでは96.7%,47.3%の精度で骨病変が検出された。
論文 参考訳(メタデータ) (2024-01-31T21:05:34Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
本稿では, 粗い予測モジュール (CPM) と反復的修正モジュール (IRM) から構成される粗大なPET再構成フレームワークを提案する。
計算オーバーヘッドの大部分をCPMに委譲することで,本手法のサンプリング速度を大幅に向上させることができる。
2つの追加戦略、すなわち補助的な誘導戦略と対照的な拡散戦略が提案され、再構築プロセスに統合される。
論文 参考訳(メタデータ) (2023-08-20T04:10:36Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
犬心電図(ECG)の評価には熟練した獣医が必要である。
心電図の解釈と診断支援のための獣医師の現在の利用状況は限られている。
犬の心電図配列を正常または異常と分類するためのディープ畳み込みニューラルネットワーク(CNN)アプローチを実装した。
論文 参考訳(メタデータ) (2023-05-17T09:06:39Z) - Whole-body tumor segmentation of 18F -FDG PET/CT using a cascaded and
ensembled convolutional neural networks [2.735686397209314]
本研究の目的は、18F-FDG PET/CT画像全体において癌疑い領域を自動的に分割するディープニューラルネットワークの性能を報告することである。
PET/CT画像を6mmの解像度で3D UNET CNNの重ね合わせで処理するケースドアプローチを開発した。
論文 参考訳(メタデータ) (2022-10-14T19:25:56Z) - Corneal endothelium assessment in specular microscopy images with Fuchs'
dystrophy via deep regression of signed distance maps [48.498376125522114]
本稿では,UNetをベースとしたセグメンテーション手法を提案する。
これは、フックスのジストロフィーの全度にわたって、信頼できるCE形態計測と腸骨同定を実現する。
論文 参考訳(メタデータ) (2022-10-13T15:34:20Z) - Automatic Tumor Segmentation via False Positive Reduction Network for
Whole-Body Multi-Modal PET/CT Images [12.885308856495353]
PET/CT画像評価では,腫瘍の自動切除が重要なステップである。
既存の方法は腫瘍領域を過剰に分離し、正常な高臓器、炎症、その他の感染症などの領域を含む傾向がある。
この制限を克服するために、偽陽性削減ネットワークを導入します。
論文 参考訳(メタデータ) (2022-09-16T04:01:14Z) - Controlling False Positive/Negative Rates for Deep-Learning-Based
Prostate Cancer Detection on Multiparametric MR images [58.85481248101611]
そこで本研究では,病変からスライスまでのマッピング機能に基づく,病変レベルのコスト感受性損失と付加的なスライスレベルの損失を組み込んだ新しいPCa検出ネットワークを提案する。
1) 病変レベルFNRを0.19から0.10に, 病変レベルFPRを1.03から0.66に減らした。
論文 参考訳(メタデータ) (2021-06-04T09:51:27Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
新型コロナウイルス(SARS-CoV-2)がパンデミックを引き起こしている。
SARS-CoV-2の逆転写-ポリメラーゼ連鎖反応に基づく現在の試験体制は、試験要求に追いついていない。
我々は,効率的なDNNと市販のWMSを組み合わせたCovidDeepというフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-20T21:47:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。