SPAN: Unlocking Pyramid Representations for Gigapixel Histopathological Images
- URL: http://arxiv.org/abs/2406.09333v2
- Date: Mon, 04 Aug 2025 01:42:40 GMT
- Title: SPAN: Unlocking Pyramid Representations for Gigapixel Histopathological Images
- Authors: Weiyi Wu, Xingjian Diao, Chongyang Gao, Xinwen Xu, Siting Li, Jiang Gui,
- Abstract summary: Whole slide images (WSIs) present fundamental computational challenges due to their gigapixel-scale resolutions and sparse, irregularly distributed informative regions.<n>We propose a novel sparse-native computational framework that preserves exact spatial relationships.<n>We develop Sparse Pyramid Attention Networks (SPAN), incorporating a hierarchical sparse pyramid attention architecture with shifted windows.
- Score: 8.026588319629528
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Whole slide images (WSIs) present fundamental computational challenges due to their gigapixel-scale resolutions and sparse, irregularly distributed informative regions. Conventional patch-based methods inevitably distort spatial relationships or treat patches as independent samples, while traditional attention mechanisms, designed for dense, uniformly distributed data, are computationally impractical for WSIs. To address these limitations, we propose a novel sparse-native computational framework that preserves exact spatial relationships, unlocking advanced modeling techniques and bridging a long-standing gap between WSI analysis and general vision. Based on this framework, we develop Sparse Pyramid Attention Networks (SPAN), incorporating a hierarchical sparse pyramid attention architecture with shifted windows that efficiently directs computational resources to informative regions. SPAN comprises two key modules: Spatial-Adaptive Feature Condensation, which progressively builds multi-scale representations from a single-scale input through sparse downsampling, and Context-Aware Feature Refinement, which captures long-range dependencies via shifted windows and global tokens. Evaluations on multiple public datasets demonstrate SPAN's superior performance over state-of-the-art methods, validating both our framework's effectiveness and SPAN's specific advantages in capturing contextual and hierachical representations that existing methods fundamentally cannot model. Our work establishes a new paradigm for WSI analysis that overcomes long-standing computational barriers. The code will be made publicly available upon publication.
Related papers
- Minimal High-Resolution Patches Are Sufficient for Whole Slide Image Representation via Cascaded Dual-Scale Reconstruction [13.897013242536849]
Whole-slide image (WSI) analysis remains challenging due to gigapixel scale and sparsely distributed diagnostic regions.<n>We propose a Cascaded Dual-Scale Reconstruction framework, demonstrating that only an average of 9 high-resolution patches per WSI are sufficient for robust slide-level representation.
arXiv Detail & Related papers (2025-08-03T08:01:30Z) - CSE-SFP: Enabling Unsupervised Sentence Representation Learning via a Single Forward Pass [3.0566617373924325]
Recent advances in pre-trained language models (PLMs) have driven remarkable progress in this field.<n>We propose CSE-SFP, an innovative method that exploits the structural characteristics of generative models.<n>We show that CSE-SFP not only produces higher-quality embeddings but also significantly reduces both training time and memory consumption.
arXiv Detail & Related papers (2025-05-01T08:27:14Z) - Quantifying Memory Utilization with Effective State-Size [73.52115209375343]
We develop a measure of textitmemory utilization'
This metric is tailored to the fundamental class of systems with textitinput-invariant and textitinput-varying linear operators
arXiv Detail & Related papers (2025-04-28T08:12:30Z) - Towards Scalable Foundation Model for Multi-modal and Hyperspectral Geospatial Data [14.104497777255137]
We introduce Low-rank Efficient Spatial-Spectral Vision Transformer with three key innovations.
We pretrain LESS ViT using a Hyperspectral Masked Autoencoder framework with integrated positional and channel masking strategies.
Experimental results demonstrate that our proposed method achieves competitive performance against state-of-the-art multi-modal geospatial foundation models.
arXiv Detail & Related papers (2025-03-17T05:42:19Z) - Threshold Attention Network for Semantic Segmentation of Remote Sensing Images [3.5449012582104795]
Self-attention mechanism (SA) is an effective approach for designing segmentation networks.
We propose a novel threshold attention mechanism (TAM) for semantic segmentation.
Based on TAM, we present a threshold attention network (TANet) for semantic segmentation.
arXiv Detail & Related papers (2025-01-14T10:09:55Z) - Clustered Patch Embeddings for Permutation-Invariant Classification of Whole Slide Images [2.6733991338938026]
Whole Slide Imaging (WSI) is a cornerstone of digital pathology, offering detailed insights critical for diagnosis and research.
Yet, the gigapixel size of WSIs imposes significant computational challenges, limiting their practical utility.
Our novel approach addresses these challenges by leveraging various encoders for intelligent data reduction and employing a different classification model to ensure robust, permutation-invariant representations of WSIs.
arXiv Detail & Related papers (2024-11-13T11:25:05Z) - Efficient Whole Slide Image Classification through Fisher Vector Representation [2.4472081831862655]
This study introduces a novel method for WSI classification by automating the identification and examination of the most informative patches.
Our method involves two-stages: firstly, it extracts only a few patches from the WSIs based on their pathological significance; and secondly, it employs Fisher vectors for representing features extracted from these patches.
This approach not only accentuates key pathological features within the WSI representation but also significantly reduces computational overhead, thus making the process more efficient and scalable.
arXiv Detail & Related papers (2024-11-13T11:24:12Z) - StyDeSty: Min-Max Stylization and Destylization for Single Domain Generalization [85.18995948334592]
Single domain generalization (single DG) aims at learning a robust model generalizable to unseen domains from only one training domain.
State-of-the-art approaches have mostly relied on data augmentations, such as adversarial perturbation and style enhancement, to synthesize new data.
We propose emphStyDeSty, which explicitly accounts for the alignment of the source and pseudo domains in the process of data augmentation.
arXiv Detail & Related papers (2024-06-01T02:41:34Z) - ELA: Efficient Local Attention for Deep Convolutional Neural Networks [15.976475674061287]
This paper introduces an Efficient Local Attention (ELA) method that achieves substantial performance improvements with a simple structure.
To overcome these challenges, we propose the incorporation of 1D convolution and Group Normalization feature enhancement techniques.
ELA can be seamlessly integrated into deep CNN networks such as ResNet, MobileNet, and DeepLab.
arXiv Detail & Related papers (2024-03-02T08:06:18Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - Topology-aware Embedding Memory for Continual Learning on Expanding Networks [63.35819388164267]
We present a framework to tackle the memory explosion problem using memory replay techniques.
PDGNNs with Topology-aware Embedding Memory (TEM) significantly outperform state-of-the-art techniques.
arXiv Detail & Related papers (2024-01-24T03:03:17Z) - Interpreting and Improving Attention From the Perspective of Large Kernel Convolution [51.06461246235176]
We introduce Large Kernel Convolutional Attention (LKCA), a novel formulation that reinterprets attention operations as a single large- Kernel convolution.
LKCA achieves competitive performance across various visual tasks, particularly in data-constrained settings.
arXiv Detail & Related papers (2024-01-11T08:40:35Z) - EPNet: An Efficient Pyramid Network for Enhanced Single-Image
Super-Resolution with Reduced Computational Requirements [12.439807086123983]
Single-image super-resolution (SISR) has seen significant advancements through the integration of deep learning.
This paper introduces a new Efficient Pyramid Network (EPNet) that harmoniously merges an Edge Split Pyramid Module (ESPM) with a Panoramic Feature Extraction Module (PFEM) to overcome the limitations of existing methods.
arXiv Detail & Related papers (2023-12-20T19:56:53Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
We introduce a novel heterogeneous memory augmentation approach for neural networks.
By introducing learnable memory tokens with attention mechanism, we can effectively boost performance without huge computational overhead.
We show our approach on various image and graph-based tasks under both in-distribution (ID) and out-of-distribution (OOD) conditions.
arXiv Detail & Related papers (2023-10-17T01:05:28Z) - Task-specific Fine-tuning via Variational Information Bottleneck for
Weakly-supervised Pathology Whole Slide Image Classification [10.243293283318415]
Multiple Instance Learning (MIL) has shown promising results in digital Pathology Whole Slide Image (WSI) classification.
We propose an efficient WSI fine-tuning framework motivated by the Information Bottleneck theory.
Our framework is evaluated on five pathology WSI datasets on various WSI heads.
arXiv Detail & Related papers (2023-03-15T08:41:57Z) - FV-UPatches: Enhancing Universality in Finger Vein Recognition [0.6299766708197883]
We propose a universal learning-based framework, which achieves generalization while training with limited data.
The proposed framework shows application potential in other vein-based biometric recognition as well.
arXiv Detail & Related papers (2022-06-02T14:20:22Z) - Learning to Aggregate Multi-Scale Context for Instance Segmentation in
Remote Sensing Images [28.560068780733342]
A novel context aggregation network (CATNet) is proposed to improve the feature extraction process.
The proposed model exploits three lightweight plug-and-play modules, namely dense feature pyramid network (DenseFPN), spatial context pyramid ( SCP), and hierarchical region of interest extractor (HRoIE)
arXiv Detail & Related papers (2021-11-22T08:55:25Z) - Global Aggregation then Local Distribution for Scene Parsing [99.1095068574454]
We show that our approach can be modularized as an end-to-end trainable block and easily plugged into existing semantic segmentation networks.
Our approach allows us to build new state of the art on major semantic segmentation benchmarks including Cityscapes, ADE20K, Pascal Context, Camvid and COCO-stuff.
arXiv Detail & Related papers (2021-07-28T03:46:57Z) - Salient Objects in Clutter [130.63976772770368]
This paper identifies and addresses a serious design bias of existing salient object detection (SOD) datasets.
This design bias has led to a saturation in performance for state-of-the-art SOD models when evaluated on existing datasets.
We propose a new high-quality dataset and update the previous saliency benchmark.
arXiv Detail & Related papers (2021-05-07T03:49:26Z) - CARAFE++: Unified Content-Aware ReAssembly of FEatures [132.49582482421246]
We propose unified Content-Aware ReAssembly of FEatures (CARAFE++), a universal, lightweight and highly effective operator to fulfill this goal.
CARAFE++ generates adaptive kernels on-the-fly to enable instance-specific content-aware handling.
It shows consistent and substantial gains across all the tasks with negligible computational overhead.
arXiv Detail & Related papers (2020-12-07T07:34:57Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.