論文の概要: Positive-Unlabelled Learning for identifying new candidate Dietary Restriction-related genes among Ageing-related genes
- arxiv url: http://arxiv.org/abs/2406.09898v2
- Date: Fri, 07 Mar 2025 12:25:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 12:21:48.969656
- Title: Positive-Unlabelled Learning for identifying new candidate Dietary Restriction-related genes among Ageing-related genes
- Title(参考訳): 老化関連遺伝子中の新規食事制限関連遺伝子同定のための正アンラベリード学習
- Authors: Jorge Paz-Ruza, Alex A. Freitas, Amparo Alonso-Betanzos, Bertha Guijarro-Berdiñas,
- Abstract要約: 食事制限(英: Dietary Restriction, DR)は、最も人気のある避妊薬の1つである。
近年、老化関連遺伝子中のDR関連遺伝子を同定するために機械学習が研究されている。
- 参考スコア(独自算出の注目度): 2.9748898344267785
- License:
- Abstract: Dietary Restriction (DR) is one of the most popular anti-ageing interventions; recently, Machine Learning (ML) has been explored to identify potential DR-related genes among ageing-related genes, aiming to minimize costly wet lab experiments needed to expand our knowledge on DR. However, to train a model from positive (DR-related) and negative (non-DR-related) examples, the existing ML approach naively labels genes without known DR relation as negative examples, assuming that lack of DR-related annotation for a gene represents evidence of absence of DR-relatedness, rather than absence of evidence. This hinders the reliability of the negative examples (non-DR-related genes) and the method's ability to identify novel DR-related genes. This work introduces a novel gene prioritisation method based on the two-step Positive-Unlabelled (PU) Learning paradigm: using a similarity-based, KNN-inspired approach, our method first selects reliable negative examples among the genes without known DR associations. Then, these reliable negatives and all known positives are used to train a classifier that effectively differentiates DR-related and non-DR-related genes, which is finally employed to generate a more reliable ranking of promising genes for novel DR-relatedness. Our method significantly outperforms (p<0.05) the existing state-of-the-art approach in three predictive accuracy metrics with up to 40% lower computational cost in the best case, and we identify 4 new promising DR-related genes (PRKAB1, PRKAB2, IRS2, PRKAG1), all with evidence from the existing literature supporting their potential DR-related role.
- Abstract(参考訳): 食事制限(DR)は、最も一般的なアンチエイジング介入の1つであり、近年、機械学習(ML)は、老化関連遺伝子のうちの潜在的なDR関連遺伝子を同定し、DRに関する知識を拡大するために必要なコストのかかる実験実験を最小化することを目的としている。しかし、既存のMLアプローチでは、DR関連遺伝子を既知のDR関係を持たない遺伝子に負の例として、DR関連アノテーションが欠如していることは、証拠がないという証拠ではなく、DR関連遺伝子の存在を示すものであることを前提として、モデルに陽性(DR関連)および陰性(非DR関連)の例をトレーニングする。
これにより、負の例(非DR関連遺伝子)の信頼性や、新規DR関連遺伝子を同定する能力が阻害される。
本研究は、2段階の正アンラベレ学習パラダイムに基づく新しい遺伝子優先順位付け手法を提案する:類似性に基づくKNNに着想を得た手法を用いて、DR関連のない遺伝子の中から信頼できる負の例を選択する。
次に、これらの信頼された陰性およびすべての既知の陽性は、DR関連遺伝子と非DR関連遺伝子を効果的に区別する分類器を訓練するために使用され、新しいDR関連遺伝子に対するより信頼性の高いランキングを生成するために最終的に使用される。
提案手法は,3つの予測精度測定値において,計算コストを最大40%削減した既存手法(PRKAB1,PRKAB2,IRS2,PRKAG1,PRKAG1)よりも有意に優れており,既存の文献でDR関連遺伝子の役割が示唆されている。
関連論文リスト
- Survey and Improvement Strategies for Gene Prioritization with Large Language Models [61.24568051916653]
大規模言語モデル (LLM) は, 医学検査において良好に機能しているが, 希少な遺伝疾患の診断における有効性は評価されていない。
表現型と可溶性レベルに基づいて, マルチエージェントとヒトフェノタイプオントロジー(HPO)を分類した。
ベースラインでは、GPT-4は他のLLMよりも優れており、因果遺伝子を正しくランク付けする際の精度は30%近く向上した。
論文 参考訳(メタデータ) (2025-01-30T23:03:03Z) - CSGDN: Contrastive Signed Graph Diffusion Network for Predicting Crop Gene-phenotype Associations [6.5678927417916455]
我々は、より少ないトレーニングサンプルでロバストなノード表現を学習し、より高いリンク予測精度を実現するために、コントラスト符号付きグラフ拡散ネットワーク(CSGDN)を提案する。
Gossypium hirsutum, Brassica napus, Triticum turgidumの3つの作物データセット上でCSGDNの有効性を検証する実験を行った。
論文 参考訳(メタデータ) (2024-10-10T01:01:10Z) - Predicting Genetic Mutation from Whole Slide Images via Biomedical-Linguistic Knowledge Enhanced Multi-label Classification [119.13058298388101]
遺伝子変異予測性能を向上させるため,生物知識を付加したPathGenomic Multi-label Transformerを開発した。
BPGTはまず、2つの慎重に設計されたモジュールによって遺伝子前駆体を構成する新しい遺伝子エンコーダを確立する。
BPGTはその後ラベルデコーダを設計し、最終的に2つの調整されたモジュールによる遺伝的突然変異予測を行う。
論文 参考訳(メタデータ) (2024-06-05T06:42:27Z) - Generalizing to Unseen Domains in Diabetic Retinopathy Classification [8.59772105902647]
糖尿病網膜症分類における分布や領域の特定にモデルを一般化する問題について検討した。
本稿では、視覚変換器の自己蒸留を実現するための、シンプルで効果的な領域一般化(DG)手法を提案する。
本稿では,オープンソースのDR分類データセット上での最先端DG手法の性能について報告する。
論文 参考訳(メタデータ) (2023-10-26T09:11:55Z) - How to Train Your DRAGON: Diverse Augmentation Towards Generalizable
Dense Retrieval [80.54532535622988]
教師付き検索とゼロショット検索の両方において高い精度を達成するために、一般化可能な高密度検索を訓練できることが示される。
多様な拡張で訓練された高密度レトリバーであるDRAGONは、教師付きおよびゼロショット評価の両方において最先端の有効性を実現する最初のBERTベースサイズのDRである。
論文 参考訳(メタデータ) (2023-02-15T03:53:26Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
我々はUn Phenotype Ensemblesという名の遺伝子発見のための新しいフレームワークを提案する。
教師なしの方法で学習された表現型のセットをプールすることで、冗長だが非常に表現性の高い表現を構築する。
これらの表現型は、(GWAS)を介して分析され、高い自信と安定した関連のみを保持する。
論文 参考訳(メタデータ) (2023-01-07T18:36:44Z) - rfPhen2Gen: A machine learning based association study of brain imaging
phenotypes to genotypes [71.1144397510333]
56個の脳画像QTを用いてSNPを予測する機械学習モデルを学習した。
アルツハイマー病(AD)リスク遺伝子APOEのSNPは、ラスソとランダムな森林に対して最低のRMSEを有していた。
ランダム・フォレストは、線形モデルによって優先順位付けされなかったが、脳関連疾患と関連があることが知られている追加のSNPを特定した。
論文 参考訳(メタデータ) (2022-03-31T20:15:22Z) - Doubly Robust Collaborative Targeted Learning for Recommendation on Data
Missing Not at Random [6.563595953273317]
推薦システムでは、受信したフィードバックデータが常にランダムではない(MNAR)。
本稿では,エラー計算(EIB)法と二重頑健(DR)法の両方の利点を効果的に捉えるbf DR-TMLEを提案する。
我々はまた、bf DR-TMLE-TLと呼ばれるDR-TMLEのための新しいRCT非協調目標学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-19T06:48:50Z) - Assessing putative bias in prediction of anti-microbial resistance from
real-world genotyping data under explicit causal assumptions [3.795323061432507]
サンプリングが非ランダム化されているため、AMR予測ツールの開発にはバイアスがかかる。
遺伝子型・フェノタイプAMRデータを用いたAMR予測における確率に基づく再バランスと共起調整の有効性を評価した。
論文 参考訳(メタデータ) (2021-07-06T21:19:21Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Bimodal Distribution Removal and Genetic Algorithm in Neural Network for
Breast Cancer Diagnosis [0.0]
本稿では,BDR (Bimodal Distribution removal) の目的癌診断分類問題に対する効果について検討する。
BDRプロセスは実際には分類性能に悪影響を及ぼす。
本稿では,遺伝的アルゴリズムを特徴選択のための効率的なツールとして検討する。
論文 参考訳(メタデータ) (2020-02-20T13:51:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。