Modified Risk Formulation for Improving the Prediction of Knee Osteoarthritis Progression
- URL: http://arxiv.org/abs/2406.10119v1
- Date: Fri, 14 Jun 2024 15:24:49 GMT
- Title: Modified Risk Formulation for Improving the Prediction of Knee Osteoarthritis Progression
- Authors: Haresh Rengaraj Rajamohan, Richard Kijowski, Kyunghyun Cho, Cem M. Deniz,
- Abstract summary: Current methods for predicting osteoarthritis (OA) outcomes do not incorporate disease specific prior knowledge.
We developed a novel approach that effectively uses consecutive imaging studies to improve OA outcome predictions.
- Score: 36.12790384412525
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current methods for predicting osteoarthritis (OA) outcomes do not incorporate disease specific prior knowledge to improve the outcome prediction models. We developed a novel approach that effectively uses consecutive imaging studies to improve OA outcome predictions by incorporating an OA severity constraint. This constraint ensures that the risk of OA for a knee should either increase or remain the same over time. DL models were trained to predict TKR within multiple time periods (1 year, 2 years, and 4 years) using knee radiographs and MRI scans. Models with and without the risk constraint were evaluated using the area under the receiver operator curve (AUROC) and the area under the precision recall curve (AUPRC) analysis. The novel RiskFORM2 method, leveraging a dual model risk constraint architecture, demonstrated superior performance, yielding an AUROC of 0.87 and AUPRC of 0.47 for 1 year TKR prediction on the OAI radiograph test set, a marked improvement over the 0.79 AUROC and 0.34 AUPRC of the baseline approach. The performance advantage extended to longer followup periods, with RiskFORM2 maintaining a high AUROC of 0.86 and AUPRC of 0.75 in predicting TKR within 4 years. Additionally, when generalizing to the external MOST radiograph test set, RiskFORM2 generalized better with an AUROC of 0.77 and AUPRC of 0.25 for 1 year predictions, which was higher than the 0.71 AUROC and 0.19 AUPRC of the baseline approach. In the MRI test sets, similar patterns emerged, with RiskFORM2 outperforming the baseline approach consistently. However, RiskFORM1 exhibited the highest AUROC of 0.86 and AUPRC of 0.72 for 4 year predictions on the OAI set.
Related papers
- KneeXNeT: An Ensemble-Based Approach for Knee Radiographic Evaluation [5.715859759904031]
Knee osteoarthritis (OA) is the most common joint disorder and a leading cause of disability.
This study developed an automated deep learning model to classify knee OA severity, reducing the need for expert evaluation.
Our ensemble model, KneeXNet, achieved the highest accuracy of 0.72, demonstrating its potential as an automated tool for knee OA assessment.
arXiv Detail & Related papers (2024-12-10T14:02:04Z) - Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction [47.7045293755736]
Early identification of patients at risk of cardiovascular diseases (CVD) is crucial for effective preventive care, reducing healthcare burden, and improving patients' quality of life.
This study demonstrates the potential of retinal optical coherence tomography ( OCT) imaging combined with fundus photographs for identifying future adverse cardiac events.
We propose a novel binary classification network based on a Multi-channel Variational Autoencoder (MCVAE), which learns a latent embedding of patients' fundus and OCT images to classify individuals into two groups: those likely to develop CVD in the future and those who are not.
arXiv Detail & Related papers (2024-10-18T12:37:51Z) - A Staged Approach using Machine Learning and Uncertainty Quantification to Predict the Risk of Hip Fracture [7.28435301162289]
This paper focuses on the prediction of hip fracture risk in older and middle-aged adults.
We propose a novel staged model that combines advanced imaging and clinical data to improve predictive performance.
arXiv Detail & Related papers (2024-05-30T14:01:02Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - Provable Risk-Sensitive Distributional Reinforcement Learning with
General Function Approximation [54.61816424792866]
We introduce a general framework on Risk-Sensitive Distributional Reinforcement Learning (RS-DisRL), with static Lipschitz Risk Measures (LRM) and general function approximation.
We design two innovative meta-algorithms: textttRS-DisRL-M, a model-based strategy for model-based function approximation, and textttRS-DisRL-V, a model-free approach for general value function approximation.
arXiv Detail & Related papers (2024-02-28T08:43:18Z) - Recurrence-Free Survival Prediction for Anal Squamous Cell Carcinoma
Chemoradiotherapy using Planning CT-based Radiomics Model [5.485361086613949]
Approximately 30% of non-metastatic anal squamous cell carcinoma (A SCC) patients will experience recurrence after chemotherapy (CRT)
We developed a model leveraging information extracted from radiation pretreatment planning CT to predict recurrence-free survival (RFS) in A SCC patients after CRT.
arXiv Detail & Related papers (2023-09-05T20:22:26Z) - GRU-D-Weibull: A Novel Real-Time Individualized Endpoint Prediction [10.871599399011306]
We propose a novel approach, GRU-D-Weibull, which combines gated recurrent units with decay (GRU-D) to model the Weibull distribution.
Using a cohort of 6,879 patients with stage 4 chronic kidney disease (CKD4), we evaluated the performance of GRU-D-Weibull in endpoint prediction.
Our approach achieved an absolute L1-loss of 1.1 years (SD 0.95) at the CKD4 index date and a minimum of 0.45 years (SD0.3) at 4 years of follow-up, outperforming competing methods significantly.
arXiv Detail & Related papers (2023-08-14T20:46:16Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - End-To-End Prediction of Knee Osteoarthritis Progression With
Multi-Modal Transformers [2.9822184411723645]
Knee Osteoarthritis (KOA) is a highly prevalent chronic musculoskeletal condition with no currently available treatment.
We leveraged recent advances in Deep Learning and developed a unified framework for the multi-modal fusion of knee imaging data.
Our follow-up analysis generally shows that prediction from the imaging data is more accurate for post-traumatic subjects.
arXiv Detail & Related papers (2023-07-03T09:10:57Z) - Deep Learning for Predicting Progression of Patellofemoral
Osteoarthritis Based on Lateral Knee Radiographs, Demographic Data and
Symptomatic Assessments [1.1549572298362785]
This study included subjects (1832 subjects, 3276 knees) from the baseline of the MOST study.
PF joint regions-of-interest were identified using an automated landmark detection tool (BoneFinder) on lateral knee X-rays.
Risk factors included age, sex, BMI and WOMAC score, and the radiographic osteoarthritis stage of the tibiofemoral joint (KL score)
arXiv Detail & Related papers (2023-05-10T06:43:33Z) - Safe Deployment for Counterfactual Learning to Rank with Exposure-Based
Risk Minimization [63.93275508300137]
We introduce a novel risk-aware Counterfactual Learning To Rank method with theoretical guarantees for safe deployment.
Our experimental results demonstrate the efficacy of our proposed method, which is effective at avoiding initial periods of bad performance when little data is available.
arXiv Detail & Related papers (2023-04-26T15:54:23Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - A New Approach for Interpretability and Reliability in Clinical Risk
Prediction: Acute Coronary Syndrome Scenario [0.33927193323747895]
We intend to create a new risk assessment methodology that combines the best characteristics of both risk score and machine learning models.
The proposed approach achieved testing results identical to the standard LR, but offers superior interpretability and personalization.
The reliability estimation of individual predictions presented a great correlation with the misclassifications rate.
arXiv Detail & Related papers (2021-10-15T19:33:46Z) - Knee Osteoarthritis Severity Prediction using an Attentive Multi-Scale
Deep Convolutional Neural Network [8.950918531231158]
This paper presents a deep learning-based framework, namely OsteoHRNet, that automatically assesses the Knee Osteoarthritis severity in terms of Kellgren and Lawrence grade classification from X-rays.
Our proposed model has achieved the best multiclass accuracy of 71.74% and MAE of 0.311 on the baseline cohort of the OAI dataset.
arXiv Detail & Related papers (2021-06-27T17:29:46Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
We propose a multi-task recurrent neural network with attention mechanism for predicting cardiovascular events from electronic health records.
The proposed approach is compared to a standard clinical risk predictor (QRISK) and machine learning alternatives using 5-year data from a NHS Foundation Trust.
arXiv Detail & Related papers (2020-07-16T17:43:13Z) - Deep learning predicts total knee replacement from magnetic resonance
images [0.0]
Total knee replacement (TKR) is the only invasive option for Knee Osteoarthritis (OA)
Only 2/3 of patients who undergo the procedure report their knees feeling ''normal'' post-operation.
This necessitates a model to identify a population at higher risk of TKR, particularly at less advanced stages of OA.
arXiv Detail & Related papers (2020-02-24T23:33:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.