論文の概要: Enhancing In-Context Learning with Semantic Representations for Relation Extraction
- arxiv url: http://arxiv.org/abs/2406.10432v1
- Date: Fri, 14 Jun 2024 22:36:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 00:32:34.236731
- Title: Enhancing In-Context Learning with Semantic Representations for Relation Extraction
- Title(参考訳): 関係抽出のための意味表現を用いた文脈内学習の強化
- Authors: Peitao Han, Lis Kanashiro Pereira, Fei Cheng, Wan Jou She, Eiji Aramaki,
- Abstract要約: 本稿では,RE 上の ICL に 2 つの AMR 強化意味表現を用いる。
どちらの場合も、すべての設定が粒度の細かいAMRのセマンティック構造から恩恵を受けることを示す。
我々は,このモデルを4つのREデータセットで評価した。
- 参考スコア(独自算出の注目度): 9.12646853282321
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we employ two AMR-enhanced semantic representations for ICL on RE: one that explores the AMR structure generated for a sentence at the subgraph level (shortest AMR path), and another that explores the full AMR structure generated for a sentence. In both cases, we demonstrate that all settings benefit from the fine-grained AMR's semantic structure. We evaluate our model on four RE datasets. Our results show that our model can outperform the GPT-based baselines, and achieve SOTA performance on two of the datasets, and competitive performance on the other two.
- Abstract(参考訳): 本稿では,文のサブグラフレベルで生成された AMR 構造を探索する手法と,文の完全 AMR 構造を探索する手法を提案する。
どちらの場合も、すべての設定が粒度の細かいAMRのセマンティック構造から恩恵を受けることを示す。
我々は,このモデルを4つのREデータセットで評価した。
以上の結果から,本モデルがGPTベースラインを上回り,2つのデータセットでSOTA性能,他の2つのデータセットで競合性能を達成できることが示唆された。
関連論文リスト
- Retrieval-Augmented Generation-based Relation Extraction [0.0]
Retrieved-Augmented Generation-based Relation extract (RAG4RE) を提案する。
本研究は,Large Language Models (LLM) を用いたRAG4RE手法の有効性を評価する。
我々のRAG4REアプローチが従来のREアプローチよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-04-20T14:42:43Z) - Learning to Extract Structured Entities Using Language Models [52.281701191329]
機械学習の最近の進歩は、情報抽出の分野に大きな影響を与えている。
タスクをエンティティ中心にすることで、さまざまなメトリクスの使用を可能にします。
我々は、Structured Entity extractを導入し、Adroximate Entity Set OverlaPメトリックを提案し、この分野にコントリビュートします。
論文 参考訳(メタデータ) (2024-02-06T22:15:09Z) - Continual Contrastive Finetuning Improves Low-Resource Relation
Extraction [34.76128090845668]
関係抽出は低リソースのシナリオやドメインでは特に困難である。
近年の文献は自己教師型学習によって低リソースREに取り組みつつある。
コントラスト学習の一貫した目的を用いたREモデルの事前学習と微調整を提案する。
論文 参考訳(メタデータ) (2022-12-21T07:30:22Z) - ReSel: N-ary Relation Extraction from Scientific Text and Tables by
Learning to Retrieve and Select [53.071352033539526]
学術論文からN-ary関係を抽出する問題について考察する。
提案手法であるReSelは,このタスクを2段階のプロシージャに分解する。
3つの科学的情報抽出データセットに対する実験により、ReSelは最先端のベースラインを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2022-10-26T02:28:02Z) - Towards Realistic Low-resource Relation Extraction: A Benchmark with
Empirical Baseline Study [51.33182775762785]
本稿では,低リソース環境下での関係抽出システムを構築するための実証的研究について述べる。
低リソース環境での性能を評価するための3つのスキームについて検討する。 (i) ラベル付きラベル付きデータを用いた異なるタイプのプロンプトベース手法、 (ii) 長期分布問題に対処する多様なバランシング手法、 (iii) ラベル付きインドメインデータを生成するためのデータ拡張技術と自己学習。
論文 参考訳(メタデータ) (2022-10-19T15:46:37Z) - Summarization as Indirect Supervision for Relation Extraction [23.98136192661566]
本稿では,関係抽出(RE)を要約式に変換するSuREを提案する。
我々は,要約タスクとREタスクの定式化を本質的に橋渡しする文・関係変換手法を開発した。
3つのデータセットの実験では、フルデータセットと低リソースの両方でSuREの有効性が示されている。
論文 参考訳(メタデータ) (2022-05-19T20:25:29Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
本稿では,関係抽出のための中間ステップ(SAIS)を監督し,拡張することにより,関連コンテキストやエンティティタイプをキャプチャするモデルを明示的に教えることを提案する。
そこで本提案手法は,より効果的な管理を行うため,より優れた品質の関係を抽出するだけでなく,それに対応する証拠をより正確に抽出する。
論文 参考訳(メタデータ) (2021-09-24T17:37:35Z) - D-REX: Dialogue Relation Extraction with Explanations [65.3862263565638]
この研究は、部分的にラベル付けされたデータのみを使用しながら関係が存在することを示す説明を抽出することに焦点を当てている。
本稿では,政策誘導型半教師付きアルゴリズムD-REXを提案する。
約90%の人は、強いBERTに基づく関節関係抽出と説明モデルよりもD-REXの説明を好んでいる。
論文 参考訳(メタデータ) (2021-09-10T22:30:48Z) - Adjacency List Oriented Relational Fact Extraction via Adaptive
Multi-task Learning [24.77542721790553]
本稿では,すべての事実抽出モデルをグラフ指向分析の観点から整理可能であることを示す。
この分析枠組みに基づいて,効率的なモデルaDjacency lIst oRientational faCT(Direct)を提案する。
論文 参考訳(メタデータ) (2021-06-03T02:57:08Z) - Named Entity Recognition and Relation Extraction using Enhanced Table
Filling by Contextualized Representations [14.614028420899409]
提案手法は,複雑な手作り特徴やニューラルネットワークアーキテクチャを伴わずに,エンティティ参照と長距離依存関係の表現を計算する。
我々はまた、歴史に基づく予測や検索戦略に頼ることなく、関係ラベルを一度に予測するためにテンソルドット積を適用する。
その単純さにもかかわらず、実験の結果、提案手法はCoNLL04とACE05の英語データセット上で最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-10-15T04:58:23Z) - Learning from Context or Names? An Empirical Study on Neural Relation
Extraction [112.06614505580501]
テキストにおける2つの主要な情報ソースの効果について検討する:テキストコンテキストとエンティティ参照(名前)
本稿では,関係抽出のための実体型コントラスト事前学習フレームワーク(RE)を提案する。
我々のフレームワークは、異なるREシナリオにおけるニューラルモデルの有効性と堅牢性を改善することができる。
論文 参考訳(メタデータ) (2020-10-05T11:21:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。