論文の概要: Graph Neural Thompson Sampling
- arxiv url: http://arxiv.org/abs/2406.10686v2
- Date: Thu, 20 Jun 2024 20:22:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 18:47:43.666239
- Title: Graph Neural Thompson Sampling
- Title(参考訳): グラフニューラルトンプソンサンプリング
- Authors: Shuang Wu, Arash A. Amini,
- Abstract要約: グラフ構造データ上に定義された報酬関数を持つオンライン意思決定問題を考える。
次に,グラフニューラルネットワークを用いたトンプソンサンプリング(TS)アルゴリズムであるtextttGNN-TSを提案する。
- 参考スコア(独自算出の注目度): 18.83205413952483
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider an online decision-making problem with a reward function defined over graph-structured data. We formally formulate the problem as an instance of graph action bandit. We then propose \texttt{GNN-TS}, a Graph Neural Network (GNN) powered Thompson Sampling (TS) algorithm which employs a GNN approximator for estimating the mean reward function and the graph neural tangent features for uncertainty estimation. We prove that, under certain boundness assumptions on the reward function, GNN-TS achieves a state-of-the-art regret bound which is (1) sub-linear of order $\tilde{\mathcal{O}}((\tilde{d} T)^{1/2})$ in the number of interaction rounds, $T$, and a notion of effective dimension $\tilde{d}$, and (2) independent of the number of graph nodes. Empirical results validate that our proposed \texttt{GNN-TS} exhibits competitive performance and scales well on graph action bandit problems.
- Abstract(参考訳): グラフ構造データ上に定義された報酬関数を持つオンライン意思決定問題を考える。
我々はこの問題をグラフアクションバンディットの例として公式に定式化する。
次に,グラフニューラルネットワーク(GNN)を用いたトンプソンサンプリング(TS)アルゴリズムである‘texttt{GNN-TS}を提案する。
報酬関数上の一定の有界性仮定の下で、GNN-TS は(1)次数 $\tilde{\mathcal{O}}((\tilde{d} T)^{1/2})$ における相互作用のラウンド数、$T$ および有効次元 $\tilde{d}$ の概念、(2) グラフノードの数に独立な、最先端の後悔境界を達成することを証明している。
実験結果から,提案手法が競合性能を示し,グラフアクションのバンドイット問題に優れていたことが確認された。
関連論文リスト
- Robust Graph Neural Network based on Graph Denoising [10.564653734218755]
グラフニューラルネットワーク(GNN)は、非ユークリッドデータセットを扱う学習問題に対して、悪名高い代替手段として登場した。
本研究は,観測トポロジにおける摂動の存在を明示的に考慮した,GNNの堅牢な実装を提案する。
論文 参考訳(メタデータ) (2023-12-11T17:43:57Z) - GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
本稿では,ラベル付きおよび観測されたグラフに基づいて学習した特定のGNNモデルの性能を評価することを目的とした,新しい問題であるGNNモデル評価について検討する。
本稿では,(1) DiscGraph セット構築と(2) GNNEvaluator トレーニングと推論を含む2段階の GNN モデル評価フレームワークを提案する。
DiscGraphセットからの効果的なトレーニング監督の下で、GNNEvaluatorは、評価対象であるGNNモデルのノード分類精度を正確に推定することを学ぶ。
論文 参考訳(メタデータ) (2023-10-23T05:51:59Z) - Training Graph Neural Networks on Growing Stochastic Graphs [114.75710379125412]
グラフニューラルネットワーク(GNN)は、ネットワーク化されたデータの意味のあるパターンを活用するために、グラフ畳み込みに依存している。
我々は,成長するグラフ列の極限オブジェクトであるグラフオンを利用して,非常に大きなグラフ上のGNNを学習することを提案する。
論文 参考訳(メタデータ) (2022-10-27T16:00:45Z) - Graph Neural Network Bandits [89.31889875864599]
グラフ構造データ上で定義された報酬関数を用いた帯域最適化問題を考察する。
この設定の主な課題は、大きなドメインへのスケーリングと、多くのノードを持つグラフへのスケーリングである。
グラフニューラルネットワーク(GNN)を用いて報酬関数を推定できることを示す。
論文 参考訳(メタデータ) (2022-07-13T18:12:36Z) - Bandits for Structure Perturbation-based Black-box Attacks to Graph
Neural Networks with Theoretical Guarantees [60.61846004535707]
グラフニューラルネットワーク(GNN)は多くのグラフベースのタスクで最先端のパフォーマンスを達成した。
攻撃者はグラフ構造をわずかに摂動させることでGNNモデルを誤解させることができる。
本稿では,構造摂動を伴うGNNに対するブラックボックス攻撃と理論的保証について考察する。
論文 参考訳(メタデータ) (2022-05-07T04:17:25Z) - The Exact Class of Graph Functions Generated by Graph Neural Networks [43.25172578943894]
グラフ関数と出力が同一のグラフニューラルネットワーク(GNN)?
本稿では,この疑問に完全に答え,GNNで表現可能なグラフ問題のクラスを特徴付ける。
この条件は2次的に多くの制約をチェックすることで効率よく検証できることを示す。
論文 参考訳(メタデータ) (2022-02-17T18:54:27Z) - On the approximation capability of GNNs in node
classification/regression tasks [4.141514895639094]
グラフニューラルネットワーク(GNN)は、グラフ処理のための幅広い種類の接続モデルである。
GNNはノード分類/回帰タスクの確率の普遍近似であることを示す。
論文 参考訳(メタデータ) (2021-06-16T17:46:51Z) - Graph Neural Networks with Local Graph Parameters [1.8600631687568656]
ローカルグラフパラメータは、任意のグラフニューラルネットワーク(GNN)アーキテクチャに追加することができる。
我々の結果は、有限モデル理論と有限変数論理の深い結果とGNNを結びつける。
論文 参考訳(メタデータ) (2021-06-12T07:43:51Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
グラフニューラルネットワーク(GNN)は、隣の情報を集約して組み合わせることでノードの特徴を学習する。
GNNはブラックボックスとして扱われ、人間の知的な説明が欠けている。
我々はモデルレベルでGNNを解釈する新しい手法 XGNN を提案する。
論文 参考訳(メタデータ) (2020-06-03T23:52:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。