論文の概要: Dynamic Domains, Dynamic Solutions: DPCore for Continual Test-Time Adaptation
- arxiv url: http://arxiv.org/abs/2406.10737v1
- Date: Sat, 15 Jun 2024 20:47:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-06-18 21:01:13.396116
- Title: Dynamic Domains, Dynamic Solutions: DPCore for Continual Test-Time Adaptation
- Title(参考訳): 動的ドメイン、動的ソリューション: 連続的なテスト時間適応のためのDPCore
- Authors: Yunbei Zhang, Akshay Mehra, Jihun Hamm,
- Abstract要約: Continual Test-Time Adaptation (TTA)は、ソース事前トレーニングされたモデルを、継続的な変更、ラベルなしのターゲットドメインに適応させようとする。
オンラインK-Meansの原則に触発されて,視覚的プロンプトによるTTAの継続的アプローチを提案する。
- 参考スコア(独自算出の注目度): 8.425690424016986
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continual Test-Time Adaptation (TTA) seeks to adapt a source pre-trained model to continually changing, unlabeled target domains. Existing TTA methods are typically designed for environments where domain changes occur gradually and can struggle in more dynamic scenarios. Inspired by the principles of online K-Means, this paper introduces a novel approach to continual TTA through visual prompting. We propose a Dynamic Prompt Coreset that not only preserves knowledge from previously visited domains but also accommodates learning from new potential domains. This is complemented by a distance-based weight updating mechanism that ensures the coreset remains current and relevant. Our approach employs a fixed model architecture alongside the coreset and an innovative updating system to effectively mitigate challenges such as catastrophic forgetting and error accumulation. Extensive testing across various benchmarks-including ImageNet-C, CIFAR100-C, and CIFAR10-C-demonstrates that our method consistently outperforms state-of-the-art (SOTA) alternatives, particularly excelling in dynamically changing environments.
- Abstract(参考訳): Continual Test-Time Adaptation (TTA)は、ソース事前トレーニングされたモデルを、継続的な変更、ラベルなしのターゲットドメインに適応させようとする。
既存のTTAメソッドは、ドメインの変更が徐々に発生し、よりダイナミックなシナリオで苦労する環境向けに設計されている。
オンラインK-Meansの原則に触発されて,視覚的プロンプトによるTTAの継続的アプローチを提案する。
我々は、これまで訪れたドメインからの知識を保存できるだけでなく、新しい潜在的ドメインからの学習も可能とするDynamic Prompt Coresetを提案する。
これは、コアセットが現在および関連性を維持し続けることを保証する距離ベースの重み更新機構によって補完される。
提案手法では,コアセットに付随する固定モデルアーキテクチャと,破滅的な忘れ込みやエラー蓄積といった課題を効果的に軽減する革新的な更新システムを採用している。
ImageNet-C, CIFAR100-C, CIFAR10-C-demonstrates, CIFAR10-C-C-Demonstrates など, さまざまなベンチマークの広範なテストにより, 動的に変化する環境において, 我々の手法が常に最先端のSOTA(State-of-the-art)代替よりも優れていることが確認された。
関連論文リスト
- Visually Similar Pair Alignment for Robust Cross-Domain Object Detection [4.990739968576321]
トレーニングデータ(ソース)と実世界の環境(ターゲット)の間のドメインギャップは、しばしばオブジェクト検出モデルの性能を低下させます。
既存のほとんどのメソッドは、ソースドメインとターゲットドメインをまたいで機能をアライメントすることで、このギャップを埋めようとしているが、アライメントペアにおける色や方向などの視覚的な違いを説明できないことが多い。
本研究では、視覚的に類似したペアの整列がドメイン適応を大幅に改善するカスタム構築データセットを用いて、初めて実演する。
論文 参考訳(メタデータ) (2025-04-09T06:11:11Z) - Exploiting Aggregation and Segregation of Representations for Domain Adaptive Human Pose Estimation [50.31351006532924]
人間のポーズ推定(HPE)は最近、モーション分析、バーチャルリアリティー、ヘルスケア等に広く応用されているため、注目を集めている。
時間と労働集約的なアノテーションのために、ラベル付き現実世界のデータセットが不足している。
本稿では,ドメイン適応型人間のポーズ推定のための表現集約と分離を両立させる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-29T17:59:45Z) - Dynamic Prompt Allocation and Tuning for Continual Test-Time Adaptation [29.931721498877483]
連続的テスト時間適応(CTTA)は、最近、継続的に進行するターゲット分布に適応するために出現している。
既存の手法は通常、モデルパラメータの変動を制限するために明示的な正規化項を含む。
学習可能なドメイン固有のプロンプトを導入し、モデルが対応する対象ドメインに適応するように誘導する。
論文 参考訳(メタデータ) (2024-12-12T14:24:04Z) - Hybrid-TTA: Continual Test-time Adaptation via Dynamic Domain Shift Detection [14.382503104075917]
継続的テスト時間適応(CTTA)は、制御されたトレーニング環境と実世界のシナリオの間のドメインギャップを埋めるための重要なアプローチとして登場した。
本稿では,最適適応のためのインスタンスワイドチューニング手法を動的に選択する総合的手法であるHybrid-TTAを提案する。
提案手法は,Cityscapes-to-ACDCベンチマークデータセットにおけるmIoUの1.6%改善を実現する。
論文 参考訳(メタデータ) (2024-09-13T06:36:31Z) - Exploring Test-Time Adaptation for Object Detection in Continually Changing Environments [13.163784646113214]
最近CTTA(Continuous Test-Time Adaptation)が、ターゲットドメインを継続的に変更するソーストレーニングモデルに徐々に適応する、有望なテクニックとして登場した。
まず、オブジェクトレベルのコントラスト学習モジュールは、対象領域における特徴表現を洗練させるために、コントラスト学習のためのオブジェクトレベルの特徴を抽出する。
第2に、適応監視モジュールは、不要な適応を動的にスキップし、予測された信頼度スコアに基づいてカテゴリ固有のしきい値を更新して、効率を向上し、擬似ラベルの品質を向上させる。
論文 参考訳(メタデータ) (2024-06-24T08:30:03Z) - StyDeSty: Min-Max Stylization and Destylization for Single Domain Generalization [85.18995948334592]
単一のドメインの一般化(単一DG)は、単一のトレーニングドメインからのみ見えないドメインに一般化可能な堅牢なモデルを学ぶことを目的としている。
最先端のアプローチは、主に新しいデータを合成するために、敵対的な摂動やスタイルの強化といったデータ拡張に頼っている。
データ拡張の過程で、ソースと擬似ドメインのアライメントを明示的に考慮したemphStyDeStyを提案する。
論文 参考訳(メタデータ) (2024-06-01T02:41:34Z) - BECoTTA: Input-dependent Online Blending of Experts for Continual Test-time Adaptation [59.1863462632777]
連続テスト時間適応(CTTA)は、学習済みの知識を維持しながら、継続的に見えない領域に効率的に適応するために必要である。
本稿では,CTTAの入力依存かつ効率的なモジュール化フレームワークであるBECoTTAを提案する。
提案手法は, トレーニング可能なパラメータを98%少なく抑えながら, 整合性や漸進性などの複数のCTTAシナリオに優れることを確認した。
論文 参考訳(メタデータ) (2024-02-13T18:37:53Z) - What, How, and When Should Object Detectors Update in Continually
Changing Test Domains? [34.13756022890991]
テストデータを推測しながらモデルをオンラインに適応させるテスト時適応アルゴリズムが提案されている。
連続的に変化するテスト領域におけるオブジェクト検出のための新しいオンライン適応手法を提案する。
提案手法は,広く使用されているベンチマークのベースラインを超え,最大4.9%,mAP7.9%の改善を実現している。
論文 参考訳(メタデータ) (2023-12-12T07:13:08Z) - Long-Term Invariant Local Features via Implicit Cross-Domain
Correspondences [79.21515035128832]
我々は、様々なドメイン変更の下で、現在の最先端特徴抽出ネットワークの性能を徹底的に分析する。
我々は、新しいデータ中心方式、Implicit Cross-Domain Correspondences (iCDC)を提案する。
iCDCは複数のニューラル・ラジアンス・フィールドで同じ環境を表し、それぞれが個々の視覚領域の下にシーンを適合させる。
論文 参考訳(メタデータ) (2023-11-06T18:53:01Z) - ViDA: Homeostatic Visual Domain Adapter for Continual Test Time Adaptation [48.039156140237615]
目標ドメインの継続的な変更に事前訓練されたモデルを適用するために、連続的なテスト時間適応タスクを提案する。
我々はCTTA用のVisual Domain Adapter (ViDA) を設計し、ドメイン固有知識とドメイン共有知識の両方を明示的に扱う。
提案手法は,CTTAタスクの分類とセグメント化の両方において,最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-06-07T11:18:53Z) - Test-time Adaptation in the Dynamic World with Compound Domain Knowledge
Management [75.86903206636741]
テスト時間適応(TTA)により、モデルは新しい環境に適応し、テスト時間中にパフォーマンスを向上させることができる。
TTAのいくつかの研究は、継続的に変化する環境において、有望な適応性能を示している。
本稿ではまず,複合ドメイン知識管理を用いた堅牢なTTAフレームワークを提案する。
次に、ソースと現在のターゲットドメイン間のドメイン類似性を用いて適応率を変調する新しい正規化を考案する。
論文 参考訳(メタデータ) (2022-12-16T09:02:01Z) - Decorate the Newcomers: Visual Domain Prompt for Continual Test Time
Adaptation [14.473807945791132]
Continual Test-Time Adaptation (CTTA) は、ソースデータにアクセスすることなく、ラベルなしのターゲットドメインを継続的に変更することを目的としている。
そこで本論文では,NLPにおける素早い学習によって動機づけられた画像レベルの視覚領域プロンプトを,ソースモデルパラメータを凍結させながら学習することを提案する。
論文 参考訳(メタデータ) (2022-12-08T08:56:02Z) - Contrastive Domain Adaptation for Time-Series via Temporal Mixup [14.723714504015483]
時系列データのための新しい軽量コントラスト型ドメイン適応フレームワークであるCoTMixを提案する。
具体的には、ソースとターゲットドメインに対する2つの中間的な拡張ビューを生成するための、新しい時間混合戦略を提案する。
我々のアプローチは、最先端のUDAメソッドを著しく上回ります。
論文 参考訳(メタデータ) (2022-12-03T06:53:38Z) - Domain-incremental Cardiac Image Segmentation with Style-oriented Replay
and Domain-sensitive Feature Whitening [67.6394526631557]
M&Mは、各受信データセットから漸進的に学習し、時間が経つにつれて改善された機能で漸進的に更新する必要がある。
医学的シナリオでは、データのプライバシのため、過去のデータへのアクセスや保存が一般的に許可されないため、これは特に困難である。
本稿では,まず過去のドメイン入力を復元し,モデル最適化中に定期的に再生する新しいドメイン増分学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-09T13:07:36Z) - Multi-Prompt Alignment for Multi-Source Unsupervised Domain Adaptation [86.02485817444216]
マルチプロンプトアライメント(MPA: Multi-Prompt Alignment)は,マルチソースUDAのためのシンプルかつ効率的なフレームワークである。
MPAは、学習したプロンプトを自動エンコードプロセスで認知し、再構築されたプロンプトの合意を最大化することでそれらを調整する。
実験によると、MPAは3つの一般的なデータセットで最先端の結果を達成し、DomainNetの平均精度は54.1%である。
論文 参考訳(メタデータ) (2022-09-30T03:40:10Z) - Continual Test-Time Domain Adaptation [94.51284735268597]
テスト時ドメイン適応は、ソースデータを使用しずに、ソース事前訓練されたモデルをターゲットドメインに適応することを目的としている。
CoTTAは実装が容易で、市販の事前訓練モデルに簡単に組み込むことができる。
論文 参考訳(メタデータ) (2022-03-25T11:42:02Z) - Efficient Hierarchical Domain Adaptation for Pretrained Language Models [77.02962815423658]
生成言語モデルは、多種多様な一般的なドメインコーパスに基づいて訓練される。
計算効率のよいアダプタアプローチを用いて,ドメイン適応を多種多様なドメインに拡張する手法を提案する。
論文 参考訳(メタデータ) (2021-12-16T11:09:29Z) - Bilevel Online Adaptation for Out-of-Domain Human Mesh Reconstruction [94.25865526414717]
本稿では,事前に訓練されたヒトメッシュ再構築モデルをドメイン外ストリーミングビデオに適応させるという新たな問題を検討する。
重みプローブと重み更新の2つのステップに全体多対象の最適化プロセスを分割するBilevel Online Adaptationを提案します。
BOAが2つのヒューマンメッシュ再構築ベンチマークで最先端の結果をもたらすことを実証する。
論文 参考訳(メタデータ) (2021-03-30T15:47:58Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
この研究は、データ駆動型手法が動的環境で継続的に学習し、最適化できる方法論を開発する。
本稿では,無線システム学習のモデリングプロセスに連続学習の概念を構築することを提案する。
我々の設計は、異なるデータサンプル間で「一定の公正性を保証する」新しいmin-maxの定式化に基づいている。
論文 参考訳(メタデータ) (2020-11-16T08:24:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。