Evaluating LLMs with Multiple Problems at once
- URL: http://arxiv.org/abs/2406.10786v3
- Date: Sat, 21 Jun 2025 20:28:53 GMT
- Title: Evaluating LLMs with Multiple Problems at once
- Authors: Zhengxiang Wang, Jordan Kodner, Owen Rambow,
- Abstract summary: This paper shows the benefits and fruitfulness of evaluating LLMs with multiple problems at once.<n>We introduce a new benchmark called ZeMPE (Zero-shot Multi-Problem Evaluation), comprising 53,100 zero-shot multi-problem prompts.<n>Our results show that LLMs are capable of handling multiple problems from a single data source as well as handling them separately, but there are conditions this multiple problem handling capability falls short.
- Score: 9.173325772800341
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper shows the benefits and fruitfulness of evaluating LLMs with multiple problems at once, a paradigm we call multi-problem evaluation (MPE). Unlike conventional single-problem evaluation, where a prompt presents a single problem and expects one specific answer, MPE places multiple problems together in a single prompt and assesses how well an LLM answers all these problems in a single output. Leveraging 6 classification and 12 reasoning benchmarks that already exist, we introduce a new benchmark called ZeMPE (Zero-shot Multi-Problem Evaluation), comprising 53,100 zero-shot multi-problem prompts. We experiment with a total of 13 LLMs from 5 model families on ZeMPE to present a comprehensive and systematic MPE. Our results show that LLMs are capable of handling multiple problems from a single data source as well as handling them separately, but there are conditions this multiple problem handling capability falls short. In addition, we perform in-depth further analyses and explore model-level factors that may enable multiple problem handling capabilities in LLMs. We release our corpus and code to facilitate future research.
Related papers
- LLM-Crowdsourced: A Benchmark-Free Paradigm for Mutual Evaluation of Large Language Models [13.713870642186254]
Large language models (LLMs) demonstrate remarkable capabilities across various tasks.<n>Existing evaluation methods suffer from issues such as data contamination, black-box operation, and subjective preference.<n>We propose a novel benchmark-free evaluation paradigm, LLM-Crowdsourced.
arXiv Detail & Related papers (2025-07-30T03:50:46Z) - ReliableMath: Benchmark of Reliable Mathematical Reasoning on Large Language Models [70.33764118171463]
Large Language Models (LLMs) tend to fabricate unreliable responses when confronted with problems that are unsolvable or beyond their capability.<n>We develop a ReliableMath dataset which incorporates open-source solvable problems and high-quality unsolvable problems.<n>LLMs fail to directly identify unsolvable problems and always generate fabricated responses.
arXiv Detail & Related papers (2025-07-03T19:19:44Z) - Leveraging Online Olympiad-Level Math Problems for LLMs Training and Contamination-Resistant Evaluation [55.21013307734612]
AoPS-Instruct is a dataset of more than 600,000 high-quality QA pairs.<n>LiveAoPSBench is an evolving evaluation set with timestamps, derived from the latest forum data.<n>Our work presents a scalable approach to creating and maintaining large-scale, high-quality datasets for advanced math reasoning.
arXiv Detail & Related papers (2025-01-24T06:39:38Z) - Dynamic Ensemble Reasoning for LLM Experts [35.774197263383996]
We propose a Dynamic Ensemble Reasoning paradigm, called DER, to integrate the strengths of multiple LLM experts conditioned on dynamic inputs.
Our method uses fewer computational resources to achieve better performance compared to state-of-the-art baselines.
arXiv Detail & Related papers (2024-12-10T12:05:56Z) - A Real-World Benchmark for Evaluating Fine-Grained Issue Solving Capabilities of Large Language Models [11.087034068992653]
FAUN-Eval is a benchmark specifically designed to evaluate the Fine-grAined issUe solviNg capabilities of LLMs.<n>It is constructed using a dataset curated from 30 well-known GitHub repositories.<n>We evaluate ten LLMs with FAUN-Eval, including four closed-source and six open-source models.
arXiv Detail & Related papers (2024-11-27T03:25:44Z) - Understanding the Role of LLMs in Multimodal Evaluation Benchmarks [77.59035801244278]
This paper investigates the role of the Large Language Model (LLM) backbone in Multimodal Large Language Models (MLLMs) evaluation.
Our study encompasses four diverse MLLM benchmarks and eight state-of-the-art MLLMs.
Key findings reveal that some benchmarks allow high performance even without visual inputs and up to 50% of error rates can be attributed to insufficient world knowledge in the LLM backbone.
arXiv Detail & Related papers (2024-10-16T07:49:13Z) - From Yes-Men to Truth-Tellers: Addressing Sycophancy in Large Language Models with Pinpoint Tuning [89.9648814145473]
Large Language Models (LLMs) tend to prioritize adherence to user prompts over providing veracious responses.
Recent works propose to employ supervised fine-tuning (SFT) to mitigate the sycophancy issue.
We propose a novel supervised pinpoint tuning (SPT), where the region-of-interest modules are tuned for a given objective.
arXiv Detail & Related papers (2024-09-03T07:01:37Z) - MAPO: Boosting Large Language Model Performance with Model-Adaptive Prompt Optimization [73.7779735046424]
We show that different prompts should be adapted to different Large Language Models (LLM) to enhance their capabilities across various downstream tasks in NLP.
We then propose a model-adaptive prompt (MAPO) method that optimize the original prompts for each specific LLM in downstream tasks.
arXiv Detail & Related papers (2024-07-04T18:39:59Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Navigating the Labyrinth: Evaluating and Enhancing LLMs' Ability to Reason About Search Problems [59.72548591120689]
We introduce a new benchmark, SearchBench, containing 11 unique search problem types.
We show that even the most advanced LLMs fail to solve these problems end-to-end in text.
Instructing LLMs to generate code that solves the problem helps, but only slightly, e.g., GPT4's performance rises to 11.7%.
arXiv Detail & Related papers (2024-06-18T00:44:58Z) - Can LLMs Solve longer Math Word Problems Better? [47.227621867242]
Math Word Problems (MWPs) are crucial for evaluating the capability of Large Language Models (LLMs)
This study pioneers the exploration of Context Length Generalizability (CoLeG)
Two novel metrics are proposed to assess the efficacy and resilience of LLMs in solving these problems.
arXiv Detail & Related papers (2024-05-23T17:13:50Z) - PECC: Problem Extraction and Coding Challenges [3.287942619833188]
We introduce PECC, a novel benchmark derived from Advent Of Code (AoC) challenges and Project Euler.
Unlike conventional benchmarks, PECC requires LLMs to interpret narrative-embedded problems, extract requirements, and generate code.
Results show varying model performance between narrative and neutral problems, with specific challenges in the Euler math-based subset.
arXiv Detail & Related papers (2024-04-29T15:02:14Z) - MM-PhyQA: Multimodal Physics Question-Answering With Multi-Image CoT Prompting [0.6675160100853794]
We curated a novel dataset, MM-PhyQA, which comprises well-constructed, high schoollevel multimodal physics problems.
For generating answers for questions consisting of multimodal input, we employed Zero-shot prediction using GPT-4 and utilized LLaVA (LLaVA and LLaVA-1.5), the latter of which were fine-tuned on our dataset.
For evaluating the performance of LLMs consisting solely of textual input, we tested the performance of the base and fine-tuned versions of the Mistral-7B and LLaMA2-7b models.
arXiv Detail & Related papers (2024-04-11T07:11:47Z) - OPDAI at SemEval-2024 Task 6: Small LLMs can Accelerate Hallucination
Detection with Weakly Supervised Data [1.3981625092173873]
This paper describes a unified system for hallucination detection of LLMs.
It wins the second prize in the model-agnostic track of the SemEval-2024 Task 6.
arXiv Detail & Related papers (2024-02-20T11:01:39Z) - MLLM-as-a-Judge: Assessing Multimodal LLM-as-a-Judge with Vision-Language Benchmark [41.68821233828375]
This paper introduces a novel benchmark, termed MLLM-as-a-Judge, to assess the ability of MLLMs in assisting judges across diverse modalities.
Our study reveals that, while MLLMs demonstrate remarkable human-like discernment in Pair Comparison, there is a significant divergence from human preferences in Scoring Evaluation and Batch Ranking.
arXiv Detail & Related papers (2024-02-07T12:28:32Z) - Competition-Level Problems are Effective LLM Evaluators [121.15880285283116]
This paper aims to evaluate the reasoning capacities of large language models (LLMs) in solving recent programming problems in Codeforces.
We first provide a comprehensive evaluation of GPT-4's peiceived zero-shot performance on this task, considering various aspects such as problems' release time, difficulties, and types of errors encountered.
Surprisingly, theThoughtived performance of GPT-4 has experienced a cliff like decline in problems after September 2021 consistently across all the difficulties and types of problems.
arXiv Detail & Related papers (2023-12-04T18:58:57Z) - Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves [57.974103113675795]
We present a method named Rephrase and Respond' (RaR) which allows Large Language Models to rephrase and expand questions posed by humans.
RaR serves as a simple yet effective prompting method for improving performance.
We show that RaR is complementary to the popular Chain-of-Thought (CoT) methods, both theoretically and empirically.
arXiv Detail & Related papers (2023-11-07T18:43:34Z) - PPTC Benchmark: Evaluating Large Language Models for PowerPoint Task
Completion [96.47420221442397]
We introduce the PowerPoint Task Completion benchmark to assess the ability of Large Language Models to finish multi-turn, multi-modal instructions.
We also propose the PPTX-Match Evaluation System that evaluates if LLMs finish the instruction based on the prediction file rather than the label API sequence.
The results show that GPT-4 outperforms other LLMs with 75.1% accuracy in single-turn dialogue testing but faces challenges in completing entire sessions, achieving just 6% session accuracy.
arXiv Detail & Related papers (2023-11-03T08:06:35Z) - FollowBench: A Multi-level Fine-grained Constraints Following Benchmark for Large Language Models [79.62191017182518]
FollowBench is a benchmark for Fine-grained Constraints Following Benchmark for Large Language Models.
We introduce a Multi-level mechanism that incrementally adds a single constraint to the initial instruction at each increased level.
By evaluating 13 popular LLMs on FollowBench, we highlight the weaknesses of LLMs in instruction following and point towards potential avenues for future work.
arXiv Detail & Related papers (2023-10-31T12:32:38Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
The application of Large Language Models (LLMs) in the recommendation domain has not been thoroughly investigated.
We benchmark several popular off-the-shelf LLMs on five recommendation tasks, including rating prediction, sequential recommendation, direct recommendation, explanation generation, and review summarization.
The benchmark results indicate that LLMs displayed only moderate proficiency in accuracy-based tasks such as sequential and direct recommendation.
arXiv Detail & Related papers (2023-08-23T16:32:54Z) - Large Language Model Is Not a Good Few-shot Information Extractor, but a
Good Reranker for Hard Samples! [43.51393135075126]
Large Language Models (LLMs) have made remarkable strides in various tasks.
We show that current advanced LLMs consistently exhibit inferior performance, higher latency, and increased budget requirements compared to fine-tuned SLMs.
We propose an adaptive filter-then-rerank paradigm to combine the strengths of LLMs and SLMs.
arXiv Detail & Related papers (2023-03-15T12:20:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.