論文の概要: Global-Local Graph Neural Networks for Node-Classification
- arxiv url: http://arxiv.org/abs/2406.10863v1
- Date: Sun, 16 Jun 2024 09:13:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 20:21:59.048929
- Title: Global-Local Graph Neural Networks for Node-Classification
- Title(参考訳): ノード分類のためのグローバルローカルグラフニューラルネットワーク
- Authors: Moshe Eliasof, Eran Treister,
- Abstract要約: 本稿では,グローバル情報とローカル情報の両方を利用してノード分類GNNの性能を向上させることを提案する。
各ラベルについて適切なラベル特徴を学習するために、ラベルに属する特徴とノード特徴との類似性を最大化する。
次に学習したラベル機能を使ってノード分類マップを予測する。
- 参考スコア(独自算出の注目度): 11.707323595237021
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The task of graph node classification is often approached by utilizing a local Graph Neural Network (GNN), that learns only local information from the node input features and their adjacency. In this paper, we propose to improve the performance of node classification GNNs by utilizing both global and local information, specifically by learning label- and node- features. We therefore call our method Global-Local-GNN (GLGNN). To learn proper label features, for each label, we maximize the similarity between its features and nodes features that belong to the label, while maximizing the distance between nodes that do not belong to the considered label. We then use the learnt label features to predict the node classification map. We demonstrate our GLGNN using three different GNN backbones, and show that our approach improves baseline performance, revealing the importance of global information utilization for node classification.
- Abstract(参考訳): グラフノード分類のタスクは、ノード入力機能とその隣接性からローカル情報のみを学習するローカルグラフニューラルネットワーク(GNN)を利用することで、しばしばアプローチされる。
本稿では,グローバルな情報とローカルな情報,特にラベルとノードの特徴を学習することで,ノード分類GNNの性能を向上させることを提案する。
そこで我々はGlobal-Local-GNN (GLGNN) と呼ぶ。
各ラベルに対して適切なラベル特徴を学習するために,ラベルに属するノードの特徴と類似度を最大化するとともに,ラベルに属さないノード間の距離を最大化する。
次に学習したラベル機能を用いてノード分類マップを予測する。
3つの異なるGNNバックボーンを用いてGLGNNを実演し,ノード分類におけるグローバル情報利用の重要性を明らかにした。
関連論文リスト
- Local Structure-aware Graph Contrastive Representation Learning [12.554113138406688]
複数のビューからノードの構造情報をモデル化するための局所構造対応グラフ比較表現学習法(LS-GCL)を提案する。
ローカルビューでは、各ターゲットノードのセマンティックサブグラフが共有GNNエンコーダに入力され、サブグラフレベルに埋め込まれたターゲットノードを取得する。
グローバルな視点では、元のグラフはノードの必要不可欠な意味情報を保存しているので、共有GNNエンコーダを利用して、グローバルなグラフレベルでターゲットノードの埋め込みを学習する。
論文 参考訳(メタデータ) (2023-08-07T03:23:46Z) - Contrastive Meta-Learning for Few-shot Node Classification [54.36506013228169]
少ないショットノード分類は、限定されたラベル付きノードのみを参照としてグラフ上のノードのラベルを予測することを目的としている。
グラフ上にCOSMICという新しい対照的なメタラーニングフレームワークを2つの重要な設計で作成する。
論文 参考訳(メタデータ) (2023-06-27T02:22:45Z) - Every Node Counts: Improving the Training of Graph Neural Networks on
Node Classification [9.539495585692007]
ノード分類のためのGNNのトレーニングのための新しい目的語を提案する。
我々の第一項は、ノードとラベルの特徴間の相互情報を最大化することを目的としている。
第2項は予測写像における異方的滑らか性を促進する。
論文 参考訳(メタデータ) (2022-11-29T23:25:14Z) - Label-Enhanced Graph Neural Network for Semi-supervised Node
Classification [32.64730237473914]
グラフニューラルネットワーク(GNN)のためのラベル強化学習フレームワークを提案する。
まず、各ラベルをクラス内のノードの仮想センターとしてモデル化し、次にノードとラベルの両方の表現を共同で学習する。
提案手法は,同一クラスに属するノードの表現を円滑に行うだけでなく,ラベルセマンティクスをGNNの学習プロセスに明示的にエンコードする。
論文 参考訳(メタデータ) (2022-05-31T09:48:47Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
本稿では,重なり合うノード群間の相互作用を集約することで,観測されたエッジがどのように生成されるかをモデル化するグラフ生成プロセスを提案する。
それぞれのエッジを複数のコミュニティ固有の重み付きエッジの和に分割し、コミュニティ固有のGNNを定義する。
エッジを異なるコミュニティに分割するGNNベースの推論ネットワーク,これらのコミュニティ固有のGNN,およびコミュニティ固有のGNNを最終分類タスクに組み合わせたGNNベースの予測器を共同で学習するために,変分推論フレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T14:37:50Z) - Node-wise Localization of Graph Neural Networks [52.04194209002702]
グラフニューラルネットワーク(GNN)は、グラフ上の表現学習モデルの強力なファミリーとして出現する。
グラフのグローバルな側面とローカルな側面の両方を考慮し,GNNのノードワイドなローカライゼーションを提案する。
我々は,4つのベンチマークグラフに対して広範な実験を行い,最先端のGNNを超える有望な性能を継続的に獲得する。
論文 参考訳(メタデータ) (2021-10-27T10:02:03Z) - Label-Consistency based Graph Neural Networks for Semi-supervised Node
Classification [47.753422069515366]
グラフニューラルネットワーク(GNN)は,グラフに基づく半教師付きノード分類において顕著な成功を収めている。
本稿では,GNNにおけるノードの受容領域を拡大するために,ノードペアが接続されていないが同一のラベルを持つラベル一貫性に基づくグラフニューラルネットワーク(LC-GNN)を提案する。
ベンチマークデータセットの実験では、LC-GNNはグラフベースの半教師付きノード分類において従来のGNNよりも優れていた。
論文 参考訳(メタデータ) (2020-07-27T11:17:46Z) - A Collective Learning Framework to Boost GNN Expressiveness [25.394456460032625]
教師付きおよび半教師付き設定におけるグラフニューラルネットワーク(GNN)を用いた帰納ノード分類の課題を考察する。
本稿では,既存のGNNの表現力を高めるための一般集団学習手法を提案する。
実世界の5つのネットワークデータセットの性能評価を行い、ノード分類精度が一貫した顕著な改善を示した。
論文 参考訳(メタデータ) (2020-03-26T22:07:28Z) - Unifying Graph Convolutional Neural Networks and Label Propagation [73.82013612939507]
LPAとGCNの関係を特徴・ラベルの平滑化と特徴・ラベルの影響の2点の観点から検討した。
理論解析に基づいて,ノード分類のためのGCNとLCAを統一するエンドツーエンドモデルを提案する。
我々のモデルは、既存の特徴に基づく注目モデルよりもタスク指向のノードラベルに基づく学習注意重みと見なすこともできる。
論文 参考訳(メタデータ) (2020-02-17T03:23:13Z) - Graph Inference Learning for Semi-supervised Classification [50.55765399527556]
半教師付きノード分類の性能を高めるためのグラフ推論学習フレームワークを提案する。
推論過程の学習には,トレーニングノードから検証ノードへの構造関係のメタ最適化を導入する。
4つのベンチマークデータセットの総合的な評価は、最先端の手法と比較して提案したGILの優位性を示している。
論文 参考訳(メタデータ) (2020-01-17T02:52:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。