論文の概要: Two-Timescale Optimization Framework for Decentralized Linear-Quadratic Optimal Control
- arxiv url: http://arxiv.org/abs/2406.11168v2
- Date: Tue, 20 Aug 2024 16:45:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 19:40:10.814583
- Title: Two-Timescale Optimization Framework for Decentralized Linear-Quadratic Optimal Control
- Title(参考訳): 分散線形量子最適制御のための2時間最適化フレームワーク
- Authors: Lechen Feng, Yuan-Hua Ni, Xuebo Zhang,
- Abstract要約: 疎性促進関数の選択に基づいて、いくつかの近似可分制約最適化問題を初めて定式化する。
分割2次間隔促進関数を導入し、同じ2時間スケールのアルゴリズムを実行することにより、誘導最適化を行う。
- 参考スコア(独自算出の注目度): 3.746304628644379
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study investigates a decentralized linear-quadratic optimal control problem, and several approximate separable constrained optimization problems are formulated for the first time based on the selection of sparsity promoting functions. First, for the optimization problem with weighted $\ell_1$ sparsity promoting function, a two-timescale algorithm is adopted that is based on the BSUM (Block Successive Upper-bound Minimization) framework and a differential equation solver. Second, a piecewise quadratic sparsity promoting function is introduced, and the induced optimization problem demonstrates an accelerated convergence rate by performing the same two-timescale algorithm. Finally, the optimization problem with $\ell_0$ sparsity promoting function is considered that is nonconvex and discontinuous, and can be approximated by successive coordinatewise convex optimization problems.
- Abstract(参考訳): 本研究では, 分散線形二乗最適制御問題について検討し, スパーシティ促進関数の選択に基づいて, 近似分離制約付き最適化問題を初めて定式化する。
まず、重み付き$\ell_1$スペーシティ促進関数の最適化問題に対して、BSUM(Block Successive Upper-bound Minimization)フレームワークと微分方程式ソルバに基づく2段階のアルゴリズムを採用する。
第2に、分割2次スペーサ性促進関数を導入し、誘導最適化問題は、同じ2時間スケールのアルゴリズムを実行することにより、加速収束率を示す。
最後に、$\ell_0$スペーサ性促進関数の最適化問題は、非凸かつ不連続であり、逐次座標凸最適化問題によって近似できると考えられる。
関連論文リスト
- Obtaining Lower Query Complexities through Lightweight Zeroth-Order Proximal Gradient Algorithms [65.42376001308064]
複素勾配問題に対する2つの分散化ZO推定器を提案する。
我々は、現在最先端の機能複雑性を$mathcalOleft(minfracdn1/2epsilon2, fracdepsilon3right)$から$tildecalOleft(fracdepsilon2right)$に改善する。
論文 参考訳(メタデータ) (2024-10-03T15:04:01Z) - Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
本稿では,アルゴリズムが検索対象関数の雑音評価にのみアクセス可能な2次スムーズかつ強い凸関数を最適化する問題を考察する。
本研究は, ミニマックス単純後悔率について, 一致した上界と下界を発達させることにより, 初めて厳密な評価を行ったものである。
論文 参考訳(メタデータ) (2024-06-28T02:56:22Z) - ALEXR: An Optimal Single-Loop Algorithm for Convex Finite-Sum Coupled Compositional Stochastic Optimization [53.14532968909759]
ALEXRと呼ばれる,効率的な単ループプリマルデュアルブロックコーディネートアルゴリズムを提案する。
本研究では, ALEXR の凸面および強凸面の収束速度を滑らか性および非滑らか性条件下で確立する。
本稿では,ALEXRの収束速度が,検討されたcFCCO問題に対する1次ブロック座標アルゴリズムの中で最適であることを示すために,より低い複雑性境界を示す。
論文 参考訳(メタデータ) (2023-12-04T19:00:07Z) - Non-Smooth Weakly-Convex Finite-sum Coupled Compositional Optimization [42.861002114813864]
本稿では,新しい合成最適化問題である$linebf n$on-underline underlinebf sakly underlinebf c$ompositional $underlineunderlineについて検討する。
論文 参考訳(メタデータ) (2023-10-05T01:01:09Z) - Adaptive SGD with Polyak stepsize and Line-search: Robust Convergence
and Variance Reduction [26.9632099249085]
AdaSPSとAdaSLSと呼ばれる2種類の新しいSPSとSLSを提案し、非補間条件における収束を保証する。
我々は, AdaSPS と AdaSLS に新しい分散低減技術を導入し, $smashwidetildemathcalO(n+1/epsilon)$グラデーション評価を必要とするアルゴリズムを得る。
論文 参考訳(メタデータ) (2023-08-11T10:17:29Z) - Stochastic Nested Compositional Bi-level Optimization for Robust Feature
Learning [11.236838268731804]
ネストされた二段階最適化問題を解くアルゴリズムを開発し,解析する。
提案アルゴリズムは,行列複雑性やミニバッチに依存しない。
論文 参考訳(メタデータ) (2023-07-11T15:52:04Z) - Decentralized Weakly Convex Optimization Over the Stiefel Manifold [28.427697270742947]
我々は分散環境でスティーフェル多様体に焦点をあて、$nMn log-1)$のエージェントの連結ネットワークをテストする。
そこで本研究では,nMn log-1 以下の自然ステーションを強制的に強制する分散下位段階法 (DRSM)$ という手法を提案する。
論文 参考訳(メタデータ) (2023-03-31T02:56:23Z) - Gradient-Free Methods for Deterministic and Stochastic Nonsmooth
Nonconvex Optimization [94.19177623349947]
非滑らかな非最適化問題は、機械学習とビジネス製造に現れる。
2つのコア課題は、有限収束を保証する効率的な方法の開発を妨げる。
GFMとSGFMの2相版も提案され, 改良された大規模評価結果が得られた。
論文 参考訳(メタデータ) (2022-09-12T06:53:24Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
制約付き意思決定プロセス (CMDP) の問題点について検討し, エージェントは, 複数の制約を条件として, 期待される累積割引報酬を最大化することを目的とする。
新しいユーティリティ・デュアル凸法は、正規化ポリシー、双対正則化、ネステロフの勾配降下双対という3つの要素の新たな統合によって提案される。
これは、凸制約を受ける全ての複雑性最適化に対して、非凸CMDP問題が$mathcal O (1/epsilon)$の低い境界に達する最初の実演である。
論文 参考訳(メタデータ) (2021-10-20T02:57:21Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
高精度リコール曲線(AUPRC)に基づく領域の最適化について検討し,不均衡なタスクに広く利用されている。
我々は、$O (1/epsilon4)$のより優れた反復による、$epsilon$定常解を見つけるための新しい運動量法を開発する。
また,O(1/epsilon4)$と同じ複雑さを持つ適応手法の新たなファミリを設計し,実際により高速な収束を享受する。
論文 参考訳(メタデータ) (2021-07-02T16:21:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。