Spillover Detection for Donor Selection in Synthetic Control Models
- URL: http://arxiv.org/abs/2406.11399v1
- Date: Mon, 17 Jun 2024 10:33:33 GMT
- Title: Spillover Detection for Donor Selection in Synthetic Control Models
- Authors: Michael O'Riordan, CiarĂ¡n M. Gilligan-Lee,
- Abstract summary: We introduce a theoretically-grounded donor selection procedure.
We show how this Theorem can be turned into a practical method for detecting potential spillover effects.
- Score: 1.1510009152620668
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Synthetic control (SC) models are widely used to estimate causal effects in settings with observational time-series data. To identify the causal effect on a target unit, SC requires the existence of correlated units that are not impacted by the intervention. Given one of these potential donor units, how can we decide whether it is in fact a valid donor - that is, one not subject to spillover effects from the intervention? Such a decision typically requires appealing to strong a priori domain knowledge specifying the units, which becomes infeasible in situations with large pools of potential donors. In this paper, we introduce a practical, theoretically-grounded donor selection procedure, aiming to weaken this domain knowledge requirement. Our main result is a Theorem that yields the assumptions required to identify donor values at post-intervention time points using only pre-intervention data. We show how this Theorem - and the assumptions underpinning it - can be turned into a practical method for detecting potential spillover effects and excluding invalid donors when constructing SCs. Importantly, we employ sensitivity analysis to formally bound the bias in our SC causal estimate in situations where an excluded donor was indeed valid, or where a selected donor was invalid. Using ideas from the proximal causal inference and instrumental variables literature, we show that the excluded donors can nevertheless be leveraged to further debias causal effect estimates. Finally, we illustrate our donor selection procedure on both simulated and real-world datasets.
Related papers
- Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Neighborhood Adaptive Estimators for Causal Inference under Network
Interference [152.4519491244279]
We consider the violation of the classical no-interference assumption, meaning that the treatment of one individuals might affect the outcomes of another.
To make interference tractable, we consider a known network that describes how interference may travel.
We study estimators for the average direct treatment effect on the treated in such a setting.
arXiv Detail & Related papers (2022-12-07T14:53:47Z) - Inferring Effect Ordering Without Causal Effect Estimation [1.6114012813668932]
Predictive models are often employed to guide interventions across various domains, such as advertising, customer retention, and personalized medicine.
Our paper addresses the question of when and how these predictive models can be interpreted causally.
We formalize two assumptions, full latent mediation and latent monotonicity, that are jointly sufficient for inferring effect ordering without direct causal effect estimation.
arXiv Detail & Related papers (2022-06-25T02:15:22Z) - Active Bayesian Causal Inference [72.70593653185078]
We propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning.
ABCI jointly infers a posterior over causal models and queries of interest.
We show that our approach is more data-efficient than several baselines that only focus on learning the full causal graph.
arXiv Detail & Related papers (2022-06-04T22:38:57Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
An object called structural causal model (SCM) represents a collection of mechanisms and sources of random variation of the system under investigation.
In this paper, we show that the causal hierarchy theorem (Thm. 1, Bareinboim et al., 2020) still holds for neural models.
We introduce a special type of SCM called a neural causal model (NCM), and formalize a new type of inductive bias to encode structural constraints necessary for performing causal inferences.
arXiv Detail & Related papers (2021-07-02T01:55:18Z) - Bayesian Model Averaging for Data Driven Decision Making when Causality
is Partially Known [0.0]
We use ensemble methods like Bayesian Model Averaging (BMA) to infer set of causal graphs.
We provide decisions by computing the expected value and risk of potential interventions explicitly.
arXiv Detail & Related papers (2021-05-12T01:55:45Z) - Deconfounding Scores: Feature Representations for Causal Effect
Estimation with Weak Overlap [140.98628848491146]
We introduce deconfounding scores, which induce better overlap without biasing the target of estimation.
We show that deconfounding scores satisfy a zero-covariance condition that is identifiable in observed data.
In particular, we show that this technique could be an attractive alternative to standard regularizations.
arXiv Detail & Related papers (2021-04-12T18:50:11Z) - Learning $\mathbf{\mathit{Matching}}$ Representations for Individualized
Organ Transplantation Allocation [98.43063331640538]
We formulate the problem of learning data-driven rules for organ matching using observational data for organ allocations and transplant outcomes.
We propose a model based on representation learning to predict donor-recipient compatibility.
Our model outperforms state-of-art allocation methods and policies executed by human experts.
arXiv Detail & Related papers (2021-01-28T01:33:21Z) - Valid Causal Inference with (Some) Invalid Instruments [24.794879633855373]
We show how to perform consistent IV estimation despite violations of the exclusion assumption.
We achieve accurate estimates of conditional average treatment effects using an ensemble of deep network-based estimators.
arXiv Detail & Related papers (2020-06-19T21:09:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.