Bounds and Bugs: The Limits of Symmetry Metrics to Detect Partisan Gerrymandering
- URL: http://arxiv.org/abs/2406.12167v2
- Date: Fri, 27 Sep 2024 00:07:03 GMT
- Title: Bounds and Bugs: The Limits of Symmetry Metrics to Detect Partisan Gerrymandering
- Authors: Ellen Veomett,
- Abstract summary: We consider two symmetry metrics to detect partisan gerrymandering: the Mean-Median Difference (MM) and Partisan Bias (PB)
We first assert that the foundation of a partisan gerrymander is to draw a map so that the preferred party wins an extreme number of seats.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider two symmetry metrics to detect partisan gerrymandering: the Mean-Median Difference (MM) and Partisan Bias (PB). To lay the groundwork for our main results, we first assert that the foundation of a partisan gerrymander is to draw a map so that the preferred party wins an extreme number of seats, and that both the Mean-Median Difference and Partisan Bias have been used to detect partisan gerrymandering. We then provide both a theoretical and empirical analysis of the Mean-Median Difference and Partisan Bias. In our theoretical analysis, we consider vote-share, seat-share pairs (V,S) for which one can construct election data having vote share V and seat share S, and turnout is equal in each district. We calculate the range of values that MM and PB can achieve on that constructed election data. In the process, we find the range of vote-share, seat share pairs (V,S) for which there is constructed election data with vote share V , seat share S, and MM = 0, and see that the corresponding range for PB is the same set of (V,S) pairs. We show how the set of such (V,S) pairs allowing for MM = 0 (and PB = 0) changes when turnout in each district is allowed to be different. By observing the results of this theoretical analysis, we give examples of how these two metrics are unable to detect when a map has an extreme number of districts won. Because these examples are constructed, we follow this with our empirical study, in which we show on 18 different U.S. maps that these two metrics are unable to detect when a map has an extreme number of districts won.
Related papers
- Don't Trust A Single Gerrymandering Metric [0.0]
We show that each of these metrics is gameable when used as a single, isolated quantity to detect gerrymandering.
We do this by using a hill-climbing method to generate district plans that are constrained by the bounds on the metric but also maximize or nearly maximize the number of districts won by a party.
One clear consequence of these results is that they demonstrate the folly of specifying a priori bounds on a metric that a redistricting commission must meet in order to avoid gerrymandering.
arXiv Detail & Related papers (2024-09-25T02:40:09Z) - Retiring $\Delta$DP: New Distribution-Level Metrics for Demographic
Parity [47.78843764957511]
The fairness metric $Delta DP$ can not precisely measure the violation of demographic parity.
We propose two new fairness metrics, Area Between Probability density function Curves (ABPC) and Area Between Cumulative density function Curves (ABCC)
Our proposed new metrics enjoy: i) zero-value ABCC/ABPC guarantees zero violation of demographic parity; ii) ABCC/ABPC guarantees demographic parity while the classification thresholds are adjusted.
arXiv Detail & Related papers (2023-01-31T06:43:55Z) - Untangling the Dueling Expert Witnesses: Comparing Ensemble Methods in
Pennsylvania's Redistricting Plans [0.0]
Ensembles of random legislative districts are a valuable tool for assessing whether a proposed district plan is an outlier or gerrymander.
Recent open source methods now permit independent validation of expert witness testimony.
We compare ensembles for the Pennsylvania House and Congressional districts calculated using "Redist" and "Gerrychain"
arXiv Detail & Related papers (2022-08-18T00:03:40Z) - Agent-based Simulation of District-based Elections [0.5076419064097732]
In district-based elections, electors cast votes in their respective districts.
In each district, the party with maximum votes wins the corresponding seat in the governing body.
The election result is based on the number of seats won by different parties.
arXiv Detail & Related papers (2022-05-28T11:19:04Z) - Expected Frequency Matrices of Elections: Computation, Geometry, and
Preference Learning [58.23459346724491]
We use the "map of elections" approach of Szufa et al. (AAMAS 2020) to analyze several well-known vote distributions.
We draw the "skeleton map" of distributions, evaluate its robustness, and analyze its properties.
arXiv Detail & Related papers (2022-05-16T17:40:22Z) - Mathematically Quantifying Non-responsiveness of the 2021 Georgia
Congressional Districting Plan [3.097163558730473]
We use a Metropolized-sampling technique through a parallel tempering method combined with ReCom.
We develop these improvements through the first case study of district plans in Georgia.
Our analysis projects that any election in Georgia will reliably elect 9 Republicans and 5 Democrats under the enacted plan.
arXiv Detail & Related papers (2022-03-13T02:58:32Z) - Implications of Distance over Redistricting Maps: Central and Outlier
Maps [6.757783454836096]
In representative democracy, a redistricting map is chosen to partition an electorate into a collection of districts each of which elects a representative.
A valid redistricting map must satisfy a collection of constraints such as being compact, contiguous, and of almost equal population.
This fact introduces a difficulty in drawing redistricting maps and it also enables a partisan legislature to possibly gerrymander by choosing a map which unfairly favors it.
arXiv Detail & Related papers (2022-03-02T04:59:30Z) - Mundus vult decipi, ergo decipiatur: Visual Communication of Uncertainty
in Election Polls [56.8172499765118]
We discuss potential sources of bias in nowcasting and forecasting.
Concepts are presented to attenuate the issue of falsely perceived accuracy.
One key idea is the use of Probabilities of Events instead of party shares.
arXiv Detail & Related papers (2021-04-28T07:02:24Z) - Bribery as a Measure of Candidate Success: Complexity Results for
Approval-Based Multiwinner Rules [58.8640284079665]
We study the problem of bribery in multiwinner elections, for the case where the voters cast approval ballots (i.e., sets of candidates they approve)
We consider a number of approval-based multiwinner rules (AV, SAV, GAV, RAV, approval-based Chamberlin--Courant, and PAV)
In general, our problems tend to be easier when we limit out bribery actions on increasing the number of approvals of the candidate that we want to be in a winning committee.
arXiv Detail & Related papers (2021-04-19T08:26:40Z) - Distribution Matching for Crowd Counting [51.90971145453012]
We show that imposing Gaussians to annotations hurts generalization performance.
We propose to use Distribution Matching for crowd COUNTing (DM-Count)
In terms of Mean Absolute Error, DM-Count outperforms the previous state-of-the-art methods.
arXiv Detail & Related papers (2020-09-28T04:57:23Z) - Learning to Match Distributions for Domain Adaptation [116.14838935146004]
This paper proposes Learning to Match (L2M) to automatically learn the cross-domain distribution matching.
L2M reduces the inductive bias by using a meta-network to learn the distribution matching loss in a data-driven way.
Experiments on public datasets substantiate the superiority of L2M over SOTA methods.
arXiv Detail & Related papers (2020-07-17T03:26:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.