論文の概要: An Optimal Transport Approach for Network Regression
- arxiv url: http://arxiv.org/abs/2406.12204v1
- Date: Tue, 18 Jun 2024 02:03:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 23:08:33.415659
- Title: An Optimal Transport Approach for Network Regression
- Title(参考訳): ネットワーク回帰のための最適輸送手法
- Authors: Alex G. Zalles, Kai M. Hung, Ann E. Finneran, Lydia Beaudrot, César A. Uribe,
- Abstract要約: 我々は、Fr'echet平均に基づく距離空間上の一般化回帰モデルにおける最近の発展の上に構築する。
本稿では,ワッサーシュタイン計量を用いたネットワーク回帰手法を提案する。
- 参考スコア(独自算出の注目度): 0.6238182916866519
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of network regression, where one is interested in how the topology of a network changes as a function of Euclidean covariates. We build upon recent developments in generalized regression models on metric spaces based on Fr\'echet means and propose a network regression method using the Wasserstein metric. We show that when representing graphs as multivariate Gaussian distributions, the network regression problem requires the computation of a Riemannian center of mass (i.e., Fr\'echet means). Fr\'echet means with non-negative weights translates into a barycenter problem and can be efficiently computed using fixed point iterations. Although the convergence guarantees of fixed-point iterations for the computation of Wasserstein affine averages remain an open problem, we provide evidence of convergence in a large number of synthetic and real-data scenarios. Extensive numerical results show that the proposed approach improves existing procedures by accurately accounting for graph size, topology, and sparsity in synthetic experiments. Additionally, real-world experiments using the proposed approach result in higher Coefficient of Determination ($R^{2}$) values and lower mean squared prediction error (MSPE), cementing improved prediction capabilities in practice.
- Abstract(参考訳): 本研究では,ネットワークのトポロジがユークリッド共変量の関数としてどのように変化するかに関心を持つネットワーク回帰問題について検討する。
我々は、Fr'echet平均に基づく距離空間上の一般化回帰モデルにおける最近の発展の上に構築し、ワッサーシュタイン計量を用いたネットワーク回帰法を提案する。
グラフを多変量ガウス分布として表すとき、ネットワーク回帰問題はリーマン中心の質量の計算を必要とする(つまり Fr\echet は意味)。
Fr\'echet は非負の重みがバリセンター問題に変換され、固定点反復を用いて効率的に計算できることを意味する。
ワッサーシュタインアフィン平均の計算に対する固定点反復の収束保証は未解決の問題であるが、多くの合成および実データシナリオにおける収束の証拠を提供する。
提案手法は, 合成実験におけるグラフサイズ, トポロジ, 疎度を正確に考慮し, 既存手法の改善を図っている。
さらに,提案手法を用いた実世界の実験により,決定係数(R^{2}$)が高く,平均2乗予測誤差(MSPE)が低くなり,実際の予測能力が向上した。
関連論文リスト
- Riemannian Federated Learning via Averaging Gradient Stream [8.75592575216789]
本稿では,RFedAGS(Federated Averaging Gradient Stream)アルゴリズムの開発と解析を行う。
合成および実世界のデータを用いて数値シミュレーションを行い,提案したRFedAGSの性能を実証した。
論文 参考訳(メタデータ) (2024-09-11T12:28:42Z) - Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
我々は、パラメトリックな$sqrt n $-rateで収束する、最も近い隣人の新しい修正とマッチング推定器を開発する。
我々は,非パラメトリック関数推定器は含まないこと,特に標本サイズ依存パラメータの平滑化には依存していないことを強調する。
論文 参考訳(メタデータ) (2024-07-11T13:28:34Z) - Distributed High-Dimensional Quantile Regression: Estimation Efficiency and Support Recovery [0.0]
我々は高次元線形量子レグレッションのための分散推定とサポート回復に焦点をあてる。
元の量子レグレッションを最小二乗最適化に変換する。
効率的なアルゴリズムを開発し、高い計算と通信効率を享受する。
論文 参考訳(メタデータ) (2024-05-13T08:32:22Z) - A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
本稿では,超パラメトリック化された2層ニューラルネットワークの無限次元関数クラス上で定義される最小最適化問題について検討する。
i) 勾配降下指数アルゴリズムの収束と, (ii) ニューラルネットワークの表現学習に対処する。
その結果、ニューラルネットワークによって誘導される特徴表現は、ワッサーシュタイン距離で測定された$O(alpha-1)$で初期表現から逸脱することが許された。
論文 参考訳(メタデータ) (2024-04-18T16:46:08Z) - Active Learning for Regression based on Wasserstein distance and GroupSort Neural Networks [0.0]
Wassersteinのアクティブ回帰モデルは、ラベル付きデータセットの代表性を測定するための分散マッチングの原理に基づいている。
Wasserstein距離はGroupSort Neural Networksを用いて計算される。
論文 参考訳(メタデータ) (2024-03-22T10:51:55Z) - Deep Generative Symbolic Regression [83.04219479605801]
記号回帰は、データから簡潔な閉形式数学的方程式を発見することを目的としている。
既存の手法は、探索から強化学習まで、入力変数の数に応じてスケールできない。
本稿では,我々のフレームワークであるDeep Generative Symbolic Regressionのインスタンス化を提案する。
論文 参考訳(メタデータ) (2023-12-30T17:05:31Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - Retire: Robust Expectile Regression in High Dimensions [3.9391041278203978]
ペナル化量子化法と期待回帰法は、高次元データの異方性検出に有用な手段を提供する。
我々は,頑健な期待回帰(退職)を提案し,研究する。
提案手法は半平滑なニュートン座標降下アルゴリズムにより効率よく解けることを示す。
論文 参考訳(メタデータ) (2022-12-11T18:03:12Z) - Communication-Efficient Distributed Quantile Regression with Optimal
Statistical Guarantees [2.064612766965483]
本稿では,分散量子レグレッションにおいて,厳密なスケーリング条件を伴わずに最適な推論を実現する方法の課題に対処する。
この問題は、ローカル(各データソース)とグローバルな目的関数に適用される二重平滑化アプローチによって解決される。
局所的および大域的滑らか化パラメータの微妙な組み合わせに依存するにもかかわらず、量子回帰モデルは完全にパラメトリックである。
論文 参考訳(メタデータ) (2021-10-25T17:09:59Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
ストリーミング$p$のサンプルから重み付き統計推定の課題を考察する。
そこで我々は,傾きの雑音に対して,よりニュアンスな条件下での傾きの傾きの低下を設計し,より詳細な解析を行う。
論文 参考訳(メタデータ) (2021-08-25T21:30:27Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
サンプリングフリー変動推論のための後方近似のより効率的なパラメータ化を提案する。
提案手法は,標準回帰問題に対する競合的な結果をもたらし,大規模画像分類タスクに適している。
論文 参考訳(メタデータ) (2021-03-15T16:16:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。