AI-Oracle Machines for Intelligent Computing
- URL: http://arxiv.org/abs/2406.12213v4
- Date: Wed, 16 Oct 2024 00:55:50 GMT
- Title: AI-Oracle Machines for Intelligent Computing
- Authors: Jie Wang,
- Abstract summary: We introduce the concept of AI-oracle machines for intelligent computing and outline several applications to demonstrate their potential.
We advocate for the development of a comprehensive platform to streamline the implementation of AI-oracle machines.
- Score: 2.6839986755082728
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce the concept of AI-oracle machines for intelligent computing and outline several applications to demonstrate their potential. Following this, we advocate for the development of a comprehensive platform to streamline the implementation of AI-oracle machines.
Related papers
- Explainability for Embedding AI: Aspirations and Actuality [1.8130068086063336]
Explainable AI (XAI) may allow developers to understand better the systems they build.
Existing XAI systems still fall short of this aspiration.
We see an unmet need to provide developers with adequate support mechanisms to cope with this complexity.
arXiv Detail & Related papers (2025-04-20T14:20:01Z) - AI Automatons: AI Systems Intended to Imitate Humans [54.19152688545896]
There is a growing proliferation of AI systems designed to mimic people's behavior, work, abilities, likenesses, or humanness.
The research, design, deployment, and availability of such AI systems have prompted growing concerns about a wide range of possible legal, ethical, and other social impacts.
arXiv Detail & Related papers (2025-03-04T03:55:38Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
Next-generation multiple input multiple output (MIMO) is expected to be intelligent and scalable.
We propose the concept of the generative AI agent, which is capable of generating tailored and specialized contents.
We present two compelling case studies that demonstrate the effectiveness of leveraging the generative AI agent for performance analysis.
arXiv Detail & Related papers (2024-04-13T02:39:36Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
generative AI has unlocked the potential to create synthetic images that closely resemble real-world photographs.
This paper explores the innovative concept of harnessing these AI-generated images as new data sources.
In contrast to real data, AI-generated data exhibit remarkable advantages, including unmatched abundance and scalability.
arXiv Detail & Related papers (2023-10-03T06:55:19Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - AI in Software Engineering: A Survey on Project Management Applications [3.156791351998142]
Machine Learning (ML) employs algorithms that undergo training on data sets, enabling them to carry out specific tasks autonomously.
AI holds immense potential in the field of software engineering, particularly in project management and planning.
arXiv Detail & Related papers (2023-07-27T23:02:24Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
This chapter focuses on differentiable intelligence and on-board machine learning.
We discuss a few selected projects originating from the European Space Agency's (ESA) Advanced Concepts Team (ACT)
arXiv Detail & Related papers (2022-12-10T07:49:50Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
Mistakes in AI systems are inevitable, arising from both technical limitations and sociotechnical gaps.
We propose that seamful design can foster AI explainability by revealing sociotechnical and infrastructural mismatches.
We explore this process with 43 AI practitioners and real end-users.
arXiv Detail & Related papers (2022-11-12T21:54:05Z) - Towards Systems Education for Artificial Intelligence: A Course Practice
in Intelligent Computing Architectures [6.440694188229122]
This course aims to teach students for designing AI accelerators on FPGA platforms.
The elaborated course contents include lecture notes and related technical materials.
Some teaching experiences and effects are discussed as well as some potential improvements in the future.
arXiv Detail & Related papers (2022-06-22T11:48:04Z) - Challenges and Opportunities of Edge AI for Next-Generation Implantable
BMIs [6.385006149689549]
We will review the emerging opportunities of on-chip AI for the next-generation implantable brain-machine interfaces (BMIs)
We will present algorithmic and IC design solutions to enable a new generation of AI-enhanced and high-channel-count BMIs.
arXiv Detail & Related papers (2022-04-04T12:47:07Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - A Classification of Artificial Intelligence Systems for Mathematics
Education [3.718476964451589]
This chapter provides an overview of the different Artificial Intelligence (AI) systems that are being used in digital tools for Mathematics Education (ME)
It is aimed at researchers in AI and Machine Learning (ML), for whom we shed some light on the specific technologies that are being used in educational applications.
arXiv Detail & Related papers (2021-07-13T12:09:10Z) - The Why, What and How of Artificial General Intelligence Chip
Development [0.0]
The intelligent sensing, automation, and edge computing applications have been the market drivers for AI chips.
The generalisation, performance, robustness, and scalability of the AI chip solutions are compared with human-like intelligence abilities.
arXiv Detail & Related papers (2020-12-08T02:36:04Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
We show how AI can empower the IoT to make it faster, smarter, greener, and safer.
First, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving.
Finally, we summarize some promising applications of AIoT that are likely to profoundly reshape our world.
arXiv Detail & Related papers (2020-11-17T13:14:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.