論文の概要: Adaptive Mean Estimation in the Hidden Markov sub-Gaussian Mixture Model
- arxiv url: http://arxiv.org/abs/2406.12446v1
- Date: Tue, 18 Jun 2024 09:48:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 19:37:07.962398
- Title: Adaptive Mean Estimation in the Hidden Markov sub-Gaussian Mixture Model
- Title(参考訳): 隠れマルコフ-ガウス混合モデルにおける適応平均推定
- Authors: Vahe Karagulyan, Mohamed Ndaoud,
- Abstract要約: まず, 高次元設定における既存の結果の限界について検討し, 中心推定問題に対する最小限の最適手順を提案する。
我々の手順は、$sqrtdelta d/n + d/n$ ではなく、$sqrtdelta d/n + d/n$ という順序の最適値に達することを示し、$delta in(0, 1)$ はラベル間の依存パラメータである。
- 参考スコア(独自算出の注目度): 2.07180164747172
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the problem of center estimation in the high dimensional binary sub-Gaussian Mixture Model with Hidden Markov structure on the labels. We first study the limitations of existing results in the high dimensional setting and then propose a minimax optimal procedure for the problem of center estimation. Among other findings, we show that our procedure reaches the optimal rate that is of order $\sqrt{\delta d/n} + d/n$ instead of $\sqrt{d/n} + d/n$ where $\delta \in(0,1)$ is a dependence parameter between labels. Along the way, we also develop an adaptive variant of our procedure that is globally minimax optimal. In order to do so, we rely on a more refined and localized analysis of the estimation risk. Overall, leveraging the hidden Markovian dependence between the labels, we show that it is possible to get a strict improvement of the rates adaptively at almost no cost.
- Abstract(参考訳): ラベルに隠れマルコフ構造を持つ高次元二元混合モデルにおける中心推定問題について検討する。
まず, 高次元設定における既存の結果の限界について検討し, 中心推定問題に対する最小限の最適手順を提案する。
その他の発見の中で、我々の手順は、$\sqrt {\delta d/n} + d/n$ ではなく、$\sqrt {\delta d/n} + d/n$ となる最適な速度に達することを示し、$\delta \in(0,1)$ はラベル間の依存パラメータである。
その過程で我々は,世界規模で最小限の最適化を施した適応的な方法も開発している。
そのため、我々はより洗練され、局所化された推定リスクの分析に頼っている。
総じて,ラベル間のマルコフ的依存の隠蔽を利用して,ほぼ無償で適応的にレートを厳格に改善できることを示す。
関連論文リスト
- Active Subsampling for Measurement-Constrained M-Estimation of Individualized Thresholds with High-Dimensional Data [3.1138411427556445]
測定制約のある問題では、大きなデータセットが利用可能であるにもかかわらず、大きなデータセットのごく一部でラベルを観測するのに手頃な価格にしかならない。
このことは、どのデータポイントが予算制約のあるラベルに最も有益であるかという重要な疑問を引き起こします。
本稿では,測定制約付きM推定フレームワークにおける最適個別化しきい値の推定に焦点をあてる。
論文 参考訳(メタデータ) (2024-11-21T00:21:17Z) - Online covariance estimation for stochastic gradient descent under
Markovian sampling [20.02012768403544]
位数$Obig(sqrtd,n-1/8(log n)1/4big)$の収束率は、状態依存および状態依存マルコフサンプリングの下で確立される。
本手法はロジスティック回帰を用いた戦略分類に適用され, 学習中の特徴を適応的に修正し, 対象クラス分類に影響を与える。
論文 参考訳(メタデータ) (2023-08-03T00:21:30Z) - Revisiting Rotation Averaging: Uncertainties and Robust Losses [51.64986160468128]
現在の手法の主な問題は、推定エピポーラを通して入力データと弱い結合しか持たない最小コスト関数である。
本稿では,点対応から回転平均化への不確実性を直接伝播させることにより,基礎となる雑音分布をモデル化することを提案する。
論文 参考訳(メタデータ) (2023-03-09T11:51:20Z) - DR-DSGD: A Distributionally Robust Decentralized Learning Algorithm over
Graphs [54.08445874064361]
本稿では,分散環境下での正規化された分散ロバストな学習問題を解くことを提案する。
Kullback-Liebler正規化関数をロバストなmin-max最適化問題に追加することにより、学習問題を修正されたロバストな問題に還元することができる。
提案アルゴリズムは, 最低分布検定精度を最大10%向上できることを示す。
論文 参考訳(メタデータ) (2022-08-29T18:01:42Z) - Distributed Sparse Regression via Penalization [5.990069843501885]
エージェントのネットワーク上の線形回帰を、(集中ノードを持たない)無向グラフとしてモデル化する。
推定問題は、局所的なLASSO損失関数の和とコンセンサス制約の2次ペナルティの最小化として定式化される。
本稿では, ペナル化問題に適用した近似勾配アルゴリズムが, 集中的な統計的誤差の順序の許容値まで線形に収束することを示す。
論文 参考訳(メタデータ) (2021-11-12T01:51:50Z) - Navigating to the Best Policy in Markov Decision Processes [68.8204255655161]
マルコフ決定過程における純粋探索問題について検討する。
エージェントはアクションを逐次選択し、結果のシステム軌道から可能な限り早くベストを目標とする。
論文 参考訳(メタデータ) (2021-06-05T09:16:28Z) - Nearly Dimension-Independent Sparse Linear Bandit over Small Action
Spaces via Best Subset Selection [71.9765117768556]
本研究では,高次元線形モデルの下での文脈的帯域問題について考察する。
この設定は、パーソナライズされたレコメンデーション、オンライン広告、パーソナライズされた医療など、不可欠な応用を見出す。
本稿では,最適部分集合選択法を用いて2重成長エポックを推定する手法を提案する。
論文 参考訳(メタデータ) (2020-09-04T04:10:39Z) - Private Stochastic Non-Convex Optimization: Adaptive Algorithms and
Tighter Generalization Bounds [72.63031036770425]
有界非次元最適化のための差分プライベート(DP)アルゴリズムを提案する。
標準勾配法に対する経験的優位性について,2つの一般的なディープラーニング手法を実証する。
論文 参考訳(メタデータ) (2020-06-24T06:01:24Z) - Least Squares Regression with Markovian Data: Fundamental Limits and
Algorithms [69.45237691598774]
マルコフ連鎖からデータポイントが依存しサンプリングされる最小二乗線形回帰問題について検討する。
この問題を$tau_mathsfmix$という観点から、鋭い情報理論のミニマックス下限を確立する。
本稿では,経験的リプレイに基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-16T04:26:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。