P-Tailor: Customizing Personality Traits for Language Models via Mixture of Specialized LoRA Experts
- URL: http://arxiv.org/abs/2406.12548v1
- Date: Tue, 18 Jun 2024 12:25:13 GMT
- Title: P-Tailor: Customizing Personality Traits for Language Models via Mixture of Specialized LoRA Experts
- Authors: Yuhao Dan, Jie Zhou, Qin Chen, Junfeng Tian, Liang He,
- Abstract summary: We learn specialized LoRA experts to represent various traits, such as openness, conscientiousness, extraversion, agreeableness and neuroticism.
We integrate P-Tailor with a personality loss specialization, promoting experts to specialize in distinct personality traits.
- Score: 34.374681921626205
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Personalized large language models (LLMs) have attracted great attention in many applications, such as intelligent education and emotional support. Most work focuses on controlling the character settings based on the profile (e.g., age, skill, experience, and so on). Conversely, the psychological theory-based personality traits with implicit expression and behavior are not well modeled, limiting their potential application in more specialized fields such as the psychological counseling agents. In this paper, we propose a mixture of experts (MoE)-based personalized LLMs, named P-tailor, to model the Big Five Personality Traits. Particularly, we learn specialized LoRA experts to represent various traits, such as openness, conscientiousness, extraversion, agreeableness and neuroticism. Then, we integrate P-Tailor with a personality specialization loss, promoting experts to specialize in distinct personality traits, thereby enhancing the efficiency of model parameter utilization. Due to the lack of datasets, we also curate a high-quality personality crafting dataset (PCD) to learn and develop the ability to exhibit different personality traits across various topics. We conduct extensive experiments to verify the great performance and effectiveness of P-Tailor in manipulation of the fine-grained personality traits of LLMs.
Related papers
- Revealing Personality Traits: A New Benchmark Dataset for Explainable Personality Recognition on Dialogues [63.936654900356004]
Personality recognition aims to identify the personality traits implied in user data such as dialogues and social media posts.
We propose a novel task named Explainable Personality Recognition, aiming to reveal the reasoning process as supporting evidence of the personality trait.
arXiv Detail & Related papers (2024-09-29T14:41:43Z) - Capturing Minds, Not Just Words: Enhancing Role-Playing Language Models with Personality-Indicative Data [58.92110996840019]
We propose to enhance role-playing language models (RPLMs) via personality-indicative data.
Specifically, we leverage questions from psychological scales and distill advanced RPAs to generate dialogues that grasp the minds of characters.
Experimental results validate that RPLMs trained with our dataset exhibit advanced role-playing capabilities for both general and personality-related evaluations.
arXiv Detail & Related papers (2024-06-27T06:24:00Z) - Is persona enough for personality? Using ChatGPT to reconstruct an agent's latent personality from simple descriptions [2.6080756513915824]
Personality, a fundamental aspect of human cognition, contains a range of traits that influence behaviors, thoughts, and emotions.
This paper explores the capabilities of large language models (LLMs) in reconstructing these complex cognitive attributes based only on simple descriptions containing socio-demographic and personality type information.
arXiv Detail & Related papers (2024-06-18T02:32:57Z) - Can AI Understand Human Personality? -- Comparing Human Experts and AI Systems at Predicting Personality Correlations [41.07853967415879]
We test the abilities of specialised deep neural networks like PersonalityMap as well as general LLMs like GPT-4o and Claude 3 Opus.
We find that when compared with individual humans, all AI models make better predictions than the vast majority of lay people and academic experts.
arXiv Detail & Related papers (2024-06-12T13:03:38Z) - Eliciting Personality Traits in Large Language Models [0.0]
Large Language Models (LLMs) are increasingly being utilized by both candidates and employers in the recruitment context.
This study seeks to obtain a better understanding of such models by examining their output variations based on different input prompts.
arXiv Detail & Related papers (2024-02-13T10:09:00Z) - PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for
Personality Detection [50.66968526809069]
We propose a novel personality detection method, called PsyCoT, which mimics the way individuals complete psychological questionnaires in a multi-turn dialogue manner.
Our experiments demonstrate that PsyCoT significantly improves the performance and robustness of GPT-3.5 in personality detection.
arXiv Detail & Related papers (2023-10-31T08:23:33Z) - Editing Personality for Large Language Models [73.59001811199823]
This paper introduces an innovative task focused on editing the personality traits of Large Language Models (LLMs)
We construct PersonalityEdit, a new benchmark dataset to address this task.
arXiv Detail & Related papers (2023-10-03T16:02:36Z) - PersonaLLM: Investigating the Ability of Large Language Models to Express Personality Traits [30.770525830385637]
We study the behavior of large language models (LLMs) based on the Big Five personality model.
Results show that LLM personas' self-reported BFI scores are consistent with their designated personality types.
Human evaluation shows that humans can perceive some personality traits with an accuracy of up to 80%.
arXiv Detail & Related papers (2023-05-04T04:58:00Z) - Identifying and Manipulating the Personality Traits of Language Models [9.213700601337383]
We investigate whether perceived personality in language models is exhibited consistently in their language generation.
We show that language models such as BERT and GPT2 can consistently identify and reflect personality markers in different contexts.
This behavior illustrates an ability to be manipulated in a highly predictable way, and frames them as tools for identifying personality traits and controlling personas in applications such as dialog systems.
arXiv Detail & Related papers (2022-12-20T14:24:11Z) - Evaluating and Inducing Personality in Pre-trained Language Models [78.19379997967191]
We draw inspiration from psychometric studies by leveraging human personality theory as a tool for studying machine behaviors.
To answer these questions, we introduce the Machine Personality Inventory (MPI) tool for studying machine behaviors.
MPI follows standardized personality tests, built upon the Big Five Personality Factors (Big Five) theory and personality assessment inventories.
We devise a Personality Prompting (P2) method to induce LLMs with specific personalities in a controllable way.
arXiv Detail & Related papers (2022-05-20T07:32:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.