CoRA: Collaborative Information Perception by Large Language Model's Weights for Recommendation
- URL: http://arxiv.org/abs/2408.10645v3
- Date: Fri, 25 Oct 2024 10:23:02 GMT
- Title: CoRA: Collaborative Information Perception by Large Language Model's Weights for Recommendation
- Authors: Yuting Liu, Jinghao Zhang, Yizhou Dang, Yuliang Liang, Qiang Liu, Guibing Guo, Jianzhe Zhao, Xingwei Wang,
- Abstract summary: Involving collaborative information in Large Language Models (LLMs) is a promising technique for adapting LLMs for recommendation.
Existing methods achieve this by concatenating collaborative features with text tokens into a unified sequence input.
We propose a new paradigm, textbfCollaborative textbfLoRA, with a collaborative query generator.
- Score: 13.867950651601483
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Involving collaborative information in Large Language Models (LLMs) is a promising technique for adapting LLMs for recommendation. Existing methods achieve this by concatenating collaborative features with text tokens into a unified sequence input and then fine-tuning to align these features with LLM's input space. Although effective, in this work, we identify two limitations when adapting LLMs to recommendation tasks, which hinder the integration of general knowledge and collaborative information, resulting in sub-optimal recommendation performance. (1) Fine-tuning LLM with recommendation data can undermine its inherent world knowledge and fundamental competencies, which are crucial for interpreting and inferring recommendation text. (2) Incorporating collaborative features into textual prompts disrupts the semantics of the original prompts, preventing LLM from generating appropriate outputs. In this paper, we propose a new paradigm, \textbf{Co}llaborative \textbf{Lo}RA (CoRA), with a collaborative query generator. Rather than input space alignment, this method aligns collaborative information with LLM's parameter space, representing them as incremental weights to update LLM's output. This way, LLM perceives collaborative information without altering its general knowledge and text inference capabilities. Specifically, we employ a collaborative filtering model to extract user and item embeddings and inject them into a set number of learnable queries. We then convert collaborative queries into collaborative weights with low-rank properties and merge the collaborative weights into LLM's weights, enabling LLM to perceive the collaborative signals and generate personalized recommendations without fine-tuning or extra collaborative tokens in prompts. Extensive experiments confirm that CoRA effectively integrates collaborative information into LLM, enhancing recommendation performance.
Related papers
- Laser: Parameter-Efficient LLM Bi-Tuning for Sequential Recommendation with Collaborative Information [76.62949982303532]
We propose a parameter-efficient Large Language Model Bi-Tuning framework for sequential recommendation with collaborative information (Laser)
In our Laser, the prefix is utilized to incorporate user-item collaborative information and adapt the LLM to the recommendation task, while the suffix converts the output embeddings of the LLM from the language space to the recommendation space for the follow-up item recommendation.
M-Former is a lightweight MoE-based querying transformer that uses a set of query experts to integrate diverse user-specific collaborative information encoded by frozen ID-based sequential recommender systems.
arXiv Detail & Related papers (2024-09-03T04:55:03Z) - LARR: Large Language Model Aided Real-time Scene Recommendation with Semantic Understanding [19.510385758079966]
Large Language Model Aided Real-time Scene Recommendation(LARR)
This paper introduces Large Language Model Aided Real-time Scene Recommendation(LARR)
arXiv Detail & Related papers (2024-08-21T10:56:26Z) - DaRec: A Disentangled Alignment Framework for Large Language Model and Recommender System [83.34921966305804]
Large language models (LLMs) have demonstrated remarkable performance in recommender systems.
We propose a novel plug-and-play alignment framework for LLMs and collaborative models.
Our method is superior to existing state-of-the-art algorithms.
arXiv Detail & Related papers (2024-08-15T15:56:23Z) - Beyond Inter-Item Relations: Dynamic Adaption for Enhancing LLM-Based Sequential Recommendation [83.87767101732351]
Sequential recommender systems (SRS) predict the next items that users may prefer based on user historical interaction sequences.
Inspired by the rise of large language models (LLMs) in various AI applications, there is a surge of work on LLM-based SRS.
We propose DARec, a sequential recommendation model built on top of coarse-grained adaption for capturing inter-item relations.
arXiv Detail & Related papers (2024-08-14T10:03:40Z) - Text-like Encoding of Collaborative Information in Large Language Models for Recommendation [58.87865271693269]
We introduce BinLLM, a novel method to seamlessly integrate collaborative information with Large Language Models for Recommendation (LLMRec)
BinLLM converts collaborative embeddings from external models into binary sequences.
BinLLM provides options to compress the binary sequence using dot-decimal notation to avoid excessively long lengths.
arXiv Detail & Related papers (2024-06-05T12:45:25Z) - A Practice-Friendly LLM-Enhanced Paradigm with Preference Parsing for Sequential Recommendation [15.153844486572932]
This paper proposes a practice-friendly LLM-enhanced paradigm with preference parsing (P2Rec) for sequential recommender systems (SRS)
Specifically, in the information reconstruction stage, we design a new user-level SFT task for collaborative information injection with the assistance of a pre-trained SRS model.
Our goal is to let LLM learn to reconstruct a corresponding prior preference distribution from each user's interaction sequence.
arXiv Detail & Related papers (2024-06-01T07:18:56Z) - CoRAL: Collaborative Retrieval-Augmented Large Language Models Improve
Long-tail Recommendation [34.29410946387975]
We introduce collaborative retrieval-augmented LLMs, CoRAL, which directly incorporate collaborative evidence into prompts.
LLMs can analyze shared and distinct preferences among users, and summarize the patterns indicating which types of users would be attracted by certain items.
Our experimental results show that CoRAL can significantly improve LLMs' reasoning abilities on specific recommendation tasks.
arXiv Detail & Related papers (2024-03-11T05:49:34Z) - CoLLM: Integrating Collaborative Embeddings into Large Language Models for Recommendation [60.2700801392527]
We introduce CoLLM, an innovative LLMRec methodology that seamlessly incorporates collaborative information into LLMs for recommendation.
CoLLM captures collaborative information through an external traditional model and maps it to the input token embedding space of LLM.
Extensive experiments validate that CoLLM adeptly integrates collaborative information into LLMs, resulting in enhanced recommendation performance.
arXiv Detail & Related papers (2023-10-30T12:25:00Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
Large language models (LLMs) are able to generate human-like, fluent responses for many downstream tasks.
This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules.
arXiv Detail & Related papers (2023-02-24T18:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.